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The apparent lack of mnanagemnt of software maintenance wi-tin DOD and
throughout the software industry has given rise to concern, as the costs
associated with software maintenance continue to increase. The major
contribu.tor to the rise in maintenance costs seem to be personnel costs
as opposed to hardware acquisition or computer time. However, to-date,
it appears that little research has been conducted to attempt to resolve
this problen. There also appears to be a lack of any standard definition
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20. (continued) -

of software maintenance. This thesis discusses vario :us models which havebeen developed to attempt to edict maintenance manlading as the control-

ling factor in maintenance costing. It evaluates one model in particular,
and proposes a possible maintenance versus life cycle phase relationship
which may be of assistance to the software manager in maintenance man-
loading prediction. It also proposes specific topics for further research
in this area.
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The apparent lack of management of software maintenance

within DOD and throughout the software industry has given

rise to concern, as the costs associated with software main-

tenance continue to increase. The major contributor to the

rise in maintenance costs seems to be personnel costs as

opposed to hardware aquisition or computer time. However,

* to-date, it appears that little research has been conducted

to attempt to resolve this problem. There also appears to be

a lack of any standard definition of software maintenance.

This thesis discusses various models which have been devel-
oped to attempt to predict maintenince manloading as the

controlling factor in maintenance costing. It evaluates one

model in particular, and proposes a possible maintenance

versus life cycle phase relationship which may be of assis-

tance to the software manager in maintenance manloading

prediction. It also proposes specific topics for further
research in this area.'
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1. BACKGROUID

The department of defense for the last twenty to thirty

years has become more and more reliant on automatic data

processing equipment to accomplish its seemingly ever

increasinq and complex mission. when this trend started,

hardware was the overriding concern, consuming, in 1955,

more than 80 percent of the data processing dollar (1].
Through the years, technical i-ovations, such as the evolu-

tion from vacumm tubes to discrete transistors and from
discrete transistors to integrated circuits, coupled with

the increased use of mass production have decreased the cost

of hardware. However, software has continued to rise in

price. This rise in the price of software and the decrease

in the price of hardware has resulted in software rapidly
becoming the more costly of the two, and it is predicted
that by 1985 it will account for better than 90 percent of
the data processing dollar [2].

The true impact of this development may not appear to be

significant until one realizes that the value of this soft-

ware in 1973 was set at 20 billion dollars for the United

States (3], and is estimated to be over 200 billion dollars

in 1985 [it].

As a direct result of the monetary value of software

production, many techniques have been developed to estimate,

*' at the start, what the overall life cycle cost of a software

project will be. A recent study conducted by Hughes
Aircraft Company for the Air Force examined twenty-one of
these models to determine commonalities and differences in

their ccst estimating approaches. Ten of these models are

9
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limited to software development cost, while eleven have
software support cost as a primary or secondary output.

Table I lists all of the models studied, in alphabetical

order.( 5]
Originally, it was thought that development costs were

the most important item to derive and/or estimate. In fact,

the development and design efforts for a new system are

indeed still looked upon as more enjoyable and rewarding

than the maintenance effort for an existing system. There

are, of course, many reasons for this view. Six of these

reasons, according to Robert Glass, are :
1. Maintenance is intellectually very difficult.

Problems cannot be bounded. The cause could be

anywhere.

2. Maintenance is technically very difficult. Problems
cannot be specialized. They could surface because of

errors in the coding, design, architecture, or

ccncept.

3. Maintenance is unfair. Usually the person who is main-

taining a product did not write it and mast interpret

what the original author meant. Documentation is

inadequate most of the time.
ti. Maintenance is no - win. People only come to mainte-

nance with problems.
5. Maintenance is infamous. There is very little glory,

noticeable progress, or chance for 'success'.

6. Maintenance lives in the past. The general quality of
code being maintained is often terrible. This is

partly because it was created when everybody's under-

standing of software was more rudimentary, and partly
because a great deal of code is produced by people

before they become really good at programming.(6]

10
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However, more and more research is being conducted on

the maintenance aspect of software cost estimation. The

reason for this is becoming apparent, as it has been esti-

mated that from forty percent to ninety-five percent of life

cycle costs can be attributed to the maintenance effort [7].

The reason for this wide range of estimation seems to lie in

the way various organizations view what constitutes

maintenance.

The definition of software maintenance appears to vary

with the organization and seems to be effected by management

constraints. Software maintenance can cover the spectrum

from correction of bugs caused by coding errors and design
inadequacies to enhancements whose purpose is to add whole

new ideas and/or design concepts not specified for inclusion

in the original system. ?he lack of a standard definition

for maintenance is a major contributor to the paucity of

data collection in this area. In many organizations, espe-

cially military, as top level management personnel rotate

through specific positions, different definitions of what
constitutes software maintenance also rotate through those

positions and the organizational levels they control. As a

direct result, data collection requirements change to

complement the definition of maintenance and, as a conse-

quence, no consistent trick of a project's manpower usage
history can be recreated. Of greater significance is the

lack of a standard maintenance policy within the organiza-

tion to include a maintenance strategy which will add to the

degree of software maintainability, if not assure it.
In view of the large costs associated with software

maintenance, GAO conducted a study which reviewed fifteen

Federal computer installations in Jetail. Their findings

pointed to two major contributors to the problem; the fact

that, in the majority of ag.ncies, maintenance is not

14
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managed as a separate, identifiable function, and there is

an absence of a uniform definition of maintenance [8].

GAO's recommendations included development of a standard

definition of maintenance by the National Bureau of

Standards and delineation of maintenance as a discrete func-

tion by agency heads. In the interim, GAO developed a check-

list of items, the consideration of which could reduce

maintenance costs. In the checklist is a set of categories

for recording maintenance costs. These six categories appear

to reflect GAO's definition of maintenance and as such, are

listed below:

1. Modify or enhance software to make it do things for

the end user that that were not requested in the orig-

inal system design.

2. Modify or enhance software to make it do things for
the end users that were called for in the original

design but which were not present in the first produc-

tion version of the software.
3. Remove defects in which the software does something

other than what the user wanted ("does the wrong

things").

(. Remove defects in which the software is programmed
incorrectly ("does the desired calculation, but gives

an incorrect answer").

5. Optimize the software to reduce the machine costs of
running it, leaving the user results unchanged.

6. Make miscellaneous modifications, such as those needed

to interface with new releases of operating

systems.( 9]
This "definition" appears to have general applicability over

the broad spectrum of activities which can be and have been

grouped under the category of software maintenance. However,

number one may cause problems in the context of maintenance

:. 15



cost estimation techniques based on the Rayleigh curve.

Since enhancements necessarily require some design/develop-

ent effort by their very nature (they give the product

capabilities not called for in the original design), the

manning level in such effort would exhibit a rise and then a

fall in magnitude in the Rayleigh fashion, thus creating a
series of small Rayleigh curves within the maintenance
phase. As long as this behavior did not vary greatly from
the normal maintenance effort for that project, it would not

have much effect on the project. However, if the front end

of the curve rose beyond some predefined maintenance support

boundary, then it would indicate the presence of a full

scale development project instead of a pure maintenance

effort, and it should signal the completion of the old
project and the start of a new one. Therefore, because of
the nature of the software life cycle, even a standard defi-

nition of maintennace has grey areas and management judge-

ment must be used in its application.

The GAO definition does, as stated earlier, provide a
good, general definition of software maintenance and, as

such, for the purposes of this thesis, software maintenance
encompasses all of its categories.

B. PROBLEM DEFINITION

James F. Green and Brenda F. Selby, formerly of the

Naval Postgraduate School, having reviewed Putnam's Software
Cost Estimating Model, the Army macro-estimating Model, the

Lehman-Belady Model, and the Parr model, have proposed a

dual theory for maintenance requirements estimation. They

proposed that, if one considered maintenance to include all

effort applied to a software project from the time that the
product was released to the user, that the peak maintenance

manloading required could be calculated by computing the

16



inflection point on a Rayleigh curve for the total software

life cycle effort. They further predicted that one could

predict the minimum maintenance aanloading requirments by

computing the inflection point on the Rayleigh curve repre-

senting the maintenance life cycle.

The proposed Green/Selby Model, upon cursory examina-

tion, appears to have tremendous potential as a tool for the

manager of software projects. However, Green and Selby were

not able to obtain sufficient data to thoroughly validate

the applicability of the model to real world situations.

Therefore, such further work is needed in this area.

*; C. RESEARCH OBJECTIVES

The objectives of the research are twofold: to evaluate

the Green/Selby model for prediction of maintenance costs

* via projection of maintenance aanloading, both for mainte-

nance team development and for outyear support resource

estimation, and to provide an analysis of applications of

the model in areas other than project management and

control. The Green/Selby model addresses two areas, a main-

tenance planning concept which is concerned with the overall

maintenance strategy as applied to a particular software

project and a maintenance control concept which is concerned

with manloading requirements estimation. Only the latter

will be dealt with in this research.

The evaluation of the model will be accomplished in the

pursuit of three subobjectives. The first is to provide an

analysis of software maintenance costing problems and a
synopsis from the literature of other existing models and

techniques, some of which were used in the initial

Green/Selby model development, and some of which the authors

feel are of equal importance and which may contribute to
further development or application oE the Green/Selby model.

17



The second subobjective is to validate the development of

the Green/Selby model through analysis of the mathematical

relationships and through recreation of the empirical devel-
opment. The third subobjective is to validate the model with

actual data from as many different sized software projects

as possible to ascertain the degree to which the model is

applicable to real world software costing problems.
Based on the results of the data analysis, projections

will be made as to possible applications of the model in

areas other than cost estimation, if such applications

appear to exist.

D. ASSURPTIONS/LINITITIONS

Three major assumptions were male at the onset of the

research effort for this thesis. Other assumptions were

necessary at specific junctures of the research but they do

not apply in every case, so they are discussed where they

are applicable. The major assumptions are as follows:

1. It was assumed, based on limited prior study in the
subject area, that the software project life cycle and

all of its phases followed the general pattern of the

Rayleigh curve.

2. It was assumed that the Green/Selby Model was valid in

its development though not thoroughly tested in its

appl ication.
* 3. It was assumed that there is little difference in how

project size affects the manning behavior of a project

during the individual phase cycles and during the

g total project life cycle.

Three major constraints were found to limit the research
-effort. They are as follows:

1. There was found to be a serious lack of readily avail-

able data which applied to the maintenance phase.

18



2. There appears to have been little major research done

in the area of software maintenance manloading/cost

estimation.

3. Because of the nature of the subject area and the

variance of maintenance data collection across organi-

zations, the research completed and data collected to

date appears to have involved what are recently being

categorized as inefficient and maintenance-intensive
design techniques. Therefore, the applicability of

early works and present research using old data may

become suspect, if not invalid, by the use of such

techniques as modularization, information hiding

modules, and the use of other, recently developed,

software tools. Hence, the new methods may alter the

old relationships entirely.

E. RESEARCH BETHODOLOGY

The research methodology implemented by the authors of
this thesis was fivefold, to include literature search, data

search/collection, research design, model validation, and

data analysis/evaluation.

a literature search was conducted both by manual and
automated means. A manual search produced most of the refer-
ences, used by Green and Selby, which were used to provide

the researchers with a solid background in the area of study

and to recreate, as closely as possible, the knowledge base

from which the Green/Selby model was developed. Two auto-

mated searches were conducted, one through the Defense

Logistics Information Studies Exchange(DLSIE) and one via
the computerized library search network. Both searches

produced numerous writings of interest from the private and

military sectors.

19



The search for data highlighted the largest single stum-

bling block to research in the area of software maintenance,

that of a lack of adequate data collection by maintaining

activities. Actual manloading records have usually been
kept during the development phases of numerous software

projects; however, maintenance data appears to have been

recorded only recently, and then only sporadically at best.

The search for data was conducted successfully via telephone
conversations with the following persons/organizations;

Goddard Space Flight Center, Greenbelt, Md.; and
Dr. illa Kay einer-Ehrlich, consultant, Bankers Trust

Co., NY, NY.

The following organizations were contacted in the course of

the search with no significant results:

Data And Analysis Center for Software, Griffis AFB, NY;

United States Army Computer Systems Command, Ft. Belvoir,
° a-;

Aeronautical Systems Division, Wright Patterson AFB,
Dayton, Ohio; and

Data Systems Design Center, Gunter AFSTA, Montgomery, Ala.

Valuable support and/or raferral information were received

from the following persons:
Dr. Robert Grafton, Office of Naval Research, Washington,

D.C.;

Dr. Victor Bascili, University of Maryland, College Park,

Md.;

Mr. David Weiss, Naval Research Laboratory, Washington,

D.C.;

Ms. Cheryl Maloney and Mr. Robert Jones, United States

Army Ccmputer Systems Command, Ft. Belvoir, Va.; and

Mr. Lawrence Putnam, uantitative Software Management,
Inc., McLean, Va.
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The NASA SEL data base, which contains data on about
forty software projects, was received from the Data and

Analysis Center for Software, but it was discovered that
maintenance data is just now being collected, and no signif-
icant aggregate will be available for approximately two

years.

A report, produced for the Air Force by General Research
Corporation of Santa Barbara, Ca., indicated that the
Planning and Resource Management Information System (PARRIS)

at the Air Force Data Systems Design Center (AFDSDC), Gunter
AFSTA, Montgomery, Ala., held a large, relatively untapped,
data base of manpower usage (projected and actual) from

' about 2000 projects. However, the data search revealed that
PARRIS was replaced by a new Personnel Cost/ Accounting

System in 1977/1978 and it appears that the former data base
was deleted due to format incompatibilities with the new

system.

As such, it is apparent that little maintenance data is
available or, if in existence, it is very difficult to

locate.
Once a knowledge base was developed and data collected,

the research process was begun. That process is listed in
general:

A. Develop mathematical relationships in terms of equa-

tions;

.. 71B. Validate Green/Selby model development;

C. Analyze empirical project data in terms of Green/Selby

model; and

D. Interpret data analysis.
In order to attempt to validate the Green/Selby model,

the model development was recreated as closely as possible
using the same or similar 4ata.
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Data analysis was conducted by using various non-linear

curve fitting techniques to fit actual life cycle man-

loading values to the Rayleigh model. Then, Green/Selby

model relationships were calculated and plotted against

maintenance phase values. The above techniques allowed eval-
uation of applicability of the Green/Selby model with actual

project data.

F. OVERVIEW OF THE THESIS

In this introductory chapter, the term software 'mainte-

nance' was defined and its importance in the context of the

data systems organization was discussed. The problem to be

considered In this thesis has been presented and the objec-

tives of the research effort intended to resolve the problem

have been delineated. Assumptions made at the onset of the

research effort and major limitations encountered during the

course of the research were discussed. Finally, the research

methodology was outlined. Chapter II looks at various

models and cost estimating techniques which were used as a
basis for the development of the Green/Selby model. It also

includes a synopsis of other models which the researchers
feel are c1 importance to the particular area of study.
Chapter III presents an in-depth analysis of the Green/Selby

model, and its propcsed applications. Chapter IV provides a

mathematical and empirical validation of the model, using
similar data to that used by Green and Selby originally.

Chapter V discusses the data analysis, and thus, the empir-
ical model validation evaluation. Finally, Chapter VI summa-

rizes the thesis and presents conclusions and
*- recommendations.
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A. CURRENT TECHNIQUES USED AS A BASIS FOR THE GREEN/SELBY

NOD EL

1. Enj.a- §2ftware g9Z I Model

Putnam developed his method for softvare cost esti-

mation by studing various systems designed by the United

States Army Computer Systems Command (USkCSC) and comparing

them to the Rayleigh life cycle profile developed by Peter

V. lorden in the 1960's. This life cycle profile, depicted

in Figure (2.1), linked the individual cycles of each of the

life cycle phases and added them together producing the
profile for the entire project. Putnam's empirical studies

showed that, for the system studied. the software life cycle

I - . .-- ,

OEIMLOPWENT MILESTONES

I" lIPROJEiCT CURVEI~~ I

"sCTe . TI
VALIOATION

Figure 2.1 Rayleigh Project Life Cycle Profile
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exhibits a rise in manpower up to a peak and then a trailing

off portion corresponding very well with Nordenes Rayleigh

curve,

Putnam attempts to answer the questions "How do I

know how long a software project will take, and how such

will it cost"? (10] In order to do this, Putnam analyzes

the fcllcwing areas:
oOptimum Man-loading over life cycle

*Total Hanpower over life cycle

*Cost per year
eLife Cycle cost in

oCurrent $

*Inflated $

'Discounted $ (for E. L.)

ominimum $ benefits to break even over economic life

*Risk profiles for:

*Man power

*Costs

*Project completion C 11]
The Rayleigh model for cumulative manpower utiliza-

tion, used by Putnam, is given by the formula
2

-at
Y = K(1-e) , (2.1)

where

Y = cumulative manpower used,

K the total number of man-years of life cycle

effort,
a = the curve shape parameter, and

t = the elapsed time in years.

However, the most popular form of the cnrve is the deriva-

tive form for current manpower atilization expressed by

2
-at

Y' = 2Kate . (2.2)

Empirically lerived:

24

.4.. . . . . .." . . ..: i
'

'- " . . " ' = - " . . - - - . .



2
a 1/ 2t d (2.3)

where
t d the time to reach peak effort.

In terms of software projects, t dhas been empirically shown

to correspond very closely to the design time (or the time
to reach initial operational capability) of a large software

project (12].
With t representing the development time for the

system, equation (2.3) can be substituted into the Rayleigh
equation, and the shape of the curve, together with the

accompanying equation, allow us to project what the manpower

requirements and cash flow for system development will be at

any given time. (Cash flow is calculated by multiplying

manpower projections by the current personnel salaries.)

The equation representing this curve is( 13)
2 2

2 - (t /2t)
Y' = K/t te. d (2.4)

d

Putnam found that there was a fundamental relation-

ship in software development between the number of source

statements in the system and the effort, development time,

and the state of technology being applied to the project.

The equation that describes this relationship is:

1/3 4/3
Ss Ck K /2, (2.5)

d

where
Pu the number of end product source lines of code

delivered,
K =the life cycle effort in, man-years,

t d - development time, and

Ck - a state of the technology constant.
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At least three different estimates of program size
should be made before development of the system begins.

They should be made once during the system definition phase
and at least twice during the functional design and specifi-

cation phase. This will insure a very realistic estimate of
the size of the system. Admittedly, estimation of Ss and Ck

are extremely difficult; however, if similar projects have
been done in the past their values should remain fairly

constant.[ 14]
Putnam's model seems to work extremely well with

large scale software projects but it does not seem to fit
well for projects under 10,000 lines of source code (15].

The largest problem with the use of Putnam's model is the
reliance on past experience and historical data banks, if in

fact they exist, to estimate the size and complexity of the

current project. It also pays little attention to operation

and maintenance costs after development is complete or non-
manpower related items such as computer time and travel

allowances which may influence total life cycle costs to a
great extent.

The Parr model was developed by F. N. Parr after he
had studied the work done by Norden and Putnam on the
Rayleigh curve. Parr was concerned that the Rayleigh curve

failed to answer questions about the learning curves usually
associated with the start of new projects. He also felt
that it made the assumption that the skill available for a

project depends on resources which have been applied to it.

This, he states, confuses the intrinsic ccnstraints of the

linear learning curve with the rate it which software can be
written, based on management's economically governed choices

in response to these constraints. Parr further states that:
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The proc ss geerally used to evalop new software canbe thought or as t e successlve so1ution of a large number
of small problem*. The sol ution of each of these indi-
vidual problems .s a decision which defines some feature
of the final prog a . A developmen t project corresponds
to starting olt with somn fixed b unded set of problems to
be solved and ending w th enough decisions having been
made for a working product to be available.(16]j

Parr utilized a binary tree concept to statistically

determine the number of possible problems and decided that

the proportion of the problems solved at time t, denoted as

W(t), was given by the formula

-at
(t) 1/(1 + A e , (2.6)

where

A = a constant, and

a = shape parameter.

By solving this equation, he could determine the

expected change in the size of the visible unsolved node set
as a linear function of the work completed. The importance

of this was that he detersined that the rate at which work

could be usefully input to the development process was

proportional to the size of the set of visible unsolved

problems, V(t). He further determined that when the optimal

input effort is applied, steps in the development would be
achieved at a rate proportional to V(t). Thus the work-rate

could be determined by solving for 7(t) which he developed
into the equation :

2
V(t) = (1/41 sech ((at + c3)/2), (2.7)

where

c3 = an integration constant.

Figure (2.2) shows the resulting curve overlayed on a corre-
sponding Rayleigh curve.

It can be seen that the back portion of the sech-

squared function correlates very highly with the Rayleigh
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Figure 2.2 Comparison of Sechz and Rayleigh Curves

curve. However, the front portion does not show a well-de-

fined starting point, as is the case with the Rayleigh

curve. Parr feels that the front portion of the curve
represents that portion of the work lone before the official
starting date for a project. He feels that this is more

realistic than the Rayleigh curve.

Parr vent on ta explore the complexity factors

introduced by the increased usage of structured programming

and developed the formula:

-2at -2at 3/2
.(t) - Cake + ( e )]/a. (2.8)

The resulting curve has its peak shifted slightly to

the right of the sech-squared function; which predicts that

peak work -rate will occur after half the project has been

don e. This he asserts iAs in keepiag with the theory that
design may be slower, but there will be a compensating

reduction in testing and maint enance effort.

28



3. Macro- es timatzg jL241 1

Having already developed a number of software
systems, the Army decided that it needed a method which

would be simple, effective, and reasonably accurate for

determining and controlling manpower and dollar resources
for any point in the software life cycle.

After reviewing the data on its existing systems,
the Army chose the mathematical relationship developed by
Norden where:

2
-at

Y' 2Kate. (2.9)

This equation was the same one used by Putnam, and it was
used by the Army to derive the various milestones to be used

by system managers. By comparing the actual resources used
when these milestones were reached, the action officer could
take corrective action if, statistically, those resources
used were outside the control limits.

These milestones were developed based on step-by-

step procedures given in the following cases:

"QU. 1:UIUIU", WI .vlomn.(rsure

Using budget data, the maximum level of manpower
(Y' ) and the number 3f years to reach maximum effort"-" max
(t max is determined. Rather than compute the values forY' max
outyear manpower loading, Table II is used to compute the
values of Y for the appropriate t By multiplying anyT'max
entry opposite its time period by K, the appropriate number
of manyears are obtained. The units of K and t will deter-

mine the dimensions.

2M U: New 1US.0. (R2 ra c_ 1a_,I)l.
Total man-years of effort and peak time for manpower

loading is derived using Bayes' theorem. Based on empirical
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.ABLE I

Ordinates for Manpover Functions

t it 1 1 2 3 4 5 6 7
1 T' max I

, O a 1.50 .1250 .0556 .0310 .0200 .0139 .0120 1

11 .60653 .22062 .10510 .06057 .03920 .02739 .020201

21 .27067 .30326 .17794 .11031 .07384 .05255 .039181

31 .03332 .24349 .20217 .14153 .10023 .07354 .055851

41 .00134 .13533 .18271 .15163 .11618 .08897 .069331

51 .00001 .05492 .13852 .14307 .12130 .09814 .079061
61 .01666 .09022 .12174 .11682 .10108 .084801

71 .00382 .05112 .09461 .10508 .09845 .086641
81 .00067 .02539 .06766 .08897 .09135 .084971

91 .00009 .01110 075 .07124 .08116 .080361
101 .00000 .00429 .027116 .05413 .06926 .073561

ill .00000 .00147 .01567 .03912 .05691 .065301

121 .00044 .00833 .02694 .04511 .056341
131 .00012 .00413 .01770 .03453 .047291

141 .00002 .00191 .01111 .02556 .038661

151 .00000 .00082 .00666 .08130 .030811

161 .00000 .00033 .00382 .01269 .023951

171 .00012 .00210 .00853 .018171

181 .00004 .00110 .00555 .013461

191 .00001 .00055 .00350 .0097I41

201 .00000 .00026 .00214 .006891

data from internal systems, a probability versus K density
function was derived vwlthout regard to type of system.
Further analysis determined frequency of system type and
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probability of occurence of each type. Using estimates

based on past US&CSC experiences (the average K value for
all systems under development and average K for the func-

tional type of system), initial estimates for a new develop-

ment are calculated from regression graphs. Then, applying

Bayes' theorem to average these individual estimates in the
weighted probability sense yields a better estimate of K

with a smaller standard deviation (i.e. better confidence in

the estimate). To improve estimates and reduce uncertainty,
Bayes' theorem is successively applied.[ 17]

4. =.I .ha elaI Mq.e2

L. 1. Belady and M. 11. Lehman developed their model

by studing the management and evolution of the OS/360 oper-

ating system. They felt that this system gave them a good
view of the processes and managerial thinking that goes into

the development and programming of medium to large-sized
projects. The decision to use this system was reached after
they had surveyed a number of versions and releases of

OS/360 before their study began. The data for each release
included measures of the size of the system, the number of
modules added, or changed, the release date, information on
manpower used, machine time used and costs involved in each

release. In general, there were large, apparently
stochastic, variations in the individual data items from
release to release.

The data exhibited a general upward trend in the
size, complexity, and cost of the system and the maintenance
process. This was indicated by comparing the components,

statements, instructions, and modules handled over the

system life cycle. The various parameters were averaged to
expose trends. When averaged, previously erratic data
appeared to become strikingly smooth, displaying nonlinear

possibly exponential - growth and complexit y.
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As a result of their research, they postulated three

laws of Program Evolution Dynamics.

I. Law of continuing changg A system that is used
underqoes continuing change un td it is judged more cost
effective to freeze and recreate it.

Software does not face the physical decay proble st:a hardware faces. But the power and log f
bilit y of computin~g systems, the extending technology +of
computer aip1ications the ever-evolving hardware, and the
?~essures for the expiottation of new business opportuni-

ies all make demands. manufacturers, tierefore,
encour~qe the continuous adaptation of programs to keep in
step with increasing skill, snsight, ambition, and oppor-
tunity. In addi ion to Such external pressures for
change, there is the constant need to repair system
faults, whether they are errors that stem from faulty
implementation or defects that relate to weaknesses in
design or behavior. Thus, a programming system undergoes
continuous maintenance and development driven by mutually
stimulating changes in system capability and environmental
usage. In fact, the evolution pattern of a large Rrogram
is similar to that of any other complex system in that it
stems from the closed-loop cyclic adaptation of environ-
ment to system changes and vice versa.

As a system is changed, its structure inevitably
degenerates. The resulting system complexity and reduc-
tion of managerability are expressed by the Second Law of
Program Evolu tio pynamic*.

II. Law of increasing entropy. The entropy of a
system (its unstructuredaess) iocre ases with time unless
spec fic work is executed to maintain or reduce it.
dataThis law too expresses vast experience, in part by
data.This in tur? leads to the formulation of the
Third Law of Program ivolution Dynamics.

III. Law of statistically smooth growth. Growth
trend measures of global system attributes may appear to
be stochastic locally in time and space, but, stat-_sti-
cally, they are cyclically self-regulating, with well-de-
fined long-range trends.
tioThe system and the metasystem -the project organiza-
tion that is developing it- constitute an organism hat is
constrained by conservation laws. These laws may be
locally violated, but they direct, constrain, control, and
thereby regulate and sm oth, the lonm-t-rm growth and
development patterns and rates. Observation, measurement,
and interpretation of the latter can thus be used to plan,
control, and forecast better the product of an existing
process and to improve the process so as to obtain desired
or desirable characteristics.(18J

Having postulated these three laws, they commenced
the process of defining a complexity factor C(R) for the

various program releases, each of which were assigned
* Release Sequence Numbers (RSN's). Prom the available data

they prcposed the formula:

C R 11 / R , (2.10)
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w here

H(R) measures the size of the the system in

odules and

K (H) records the number of system modules

that have received attention.

Utilizing this complexity factor, they stated that

the design - programming - distribution usage system has a

feedback driven and controlled transfer function and an

input-output relationship. This feedback results, some-

times, from constant pressure to supplement system capa-
bility and power. This constant pressure normally results

in wozk pressures building up as growth rate increases.

Accordingly, the growth rate increases the size and

complexity of the system and reduces the quality of design,
coding, and testing. This is accompanied by lagging docu-

mentation, and other factors, which emerge to counter the

increasing growth rate.

Eventually, the above relationship resulted in the

need for a system consolidation in which correction,

restructuring, and rewriting were done with few, if any,
functional enhancements. The consolidation often results in

the shrinking of a system during such a release, rather than

the growing normally experienced with each new release.

This, they observed, occurred with every twenty to twenty-

one releases of the system. They further observed that
successful releases appeared to have an upper bound of about

,. 1400 modules.

Since the majority of managers base their decisions

on available budgets, Lehman and Belady proposed that the

total expenditure for all activities involved wi-h the

project be equal to the budget, and hence, the formula for
the budget (B) is given by:

B P + A + C (2.11)
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w here

P is units of fault extraction activity

termed progressive,
a is the amount of resources associated with

documentation, administration, communication,

and learning activity termed antiregressive.
C is the increasing work demanded to cope with

the neglect of A, and is given by the formula

C = (1-m) kPdt, and (2. 12)

where

a and k are defined below.

The formula for antiregressive activities is:
A = mkP (2.13)

where

a is the management factor, which is the

fraction of progress, kP, that is actually
dedicated by management to A activity, and

k represents the inherent A activity required

for each unit of P activity so that complexity

does not grow and is given by the formula

k A / P. (2.14)
Mana eaent is assumed to h full control of the

allocatign of its resources and the division of effort
between P- and A-type activities. janagement cannot
however, directly control the growth in complexity the
accumulates, except by utter concentration on complexity
control through restructuring. This Is ar. activity that is
stritl7antilegressive and, as sjich is sychologically
" ifficult o inspire since it yielas no firect, short-
term, benefits. (19]

An interpretation of their model suggests that more

rapid work leads to greater pressures on the team, and hence
more errors. This, in turn, requires greater repair
activity. However, the data indicates that this problem is

mainly incurred in the same release rather than discovered

and undertaken thereafter. Futhermore, since it appears to
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- . lead to an increase in the fraction of the system handled,
it suggests that the maintenance teams tend to remove the

symptoms of a fault rather than to locate and repair its

cause. This problem is reduced through proper communica-

- tion, documentation, and learning by the programming

team.[20]

B. OTHER MODELS OF INTEREST

Randall W. Jensen [21] stated that, because tradi-

tional intuitive estimation methods consistently produce
optimistic results which contribute to the too familiar cost

overrun and schedule slippage, customers for software prod-

ucts are becoming less willing to tolerate the losses asso-

. ciated with inaccurate estimates. He, therefore, derived

* .his model based primarily on the work done by Norden,
Putnam, and Doty Associates.

In conjunction with the familiar Rayleigh equation

2
-at

Y' 2Kate, (2. 15)

Jensen's model consists of a series of equations for system

productivity, initial project staffing rate, system
complexity, system size, development effort, and risk

analysis.
He defines the productivity relationship by the

equation:

-B
2

PR = C (K/t), (2.16)r . n

where

PR = average project productivity (source
lines per year),

K = Total life cycle cost in manvears,
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. . ... ,

t = development time in years and is defined
d

as the peak time for the Rayleigh curve,
C a a proportionality constant, and
n

B = slope of productivity relationship.
While this equation is not actually related to the

system difficulty, it is related to the rate at which staff

is applied to the task. Intuitively, productivity is an
inverse function of the number of people directly involved
with a development task due to the associated losses caused

by the number of ccamunication paths in the organization.
This phenomenon can be accounted for by utilizing the

relationship

M - K/t , (2.17)
d

which is the formula for the initial project staffing rate,
H, and is extremely important in determining the optimum
project staffing rate.

ost, if not all, of the projects studied by Jensen,

appeared to demonstrate a consistent pattern which could be
used to classify each project into distinct categories.
These categcries were dependent on the interface complexity,
logical complexity, and the percentage of new development in
the system, all of which seemed to be defined by the ratio

3
K/t . (2.18)

3
The expression K/t , in a practical sense, represents

a natural equilibrium between the lifecycle cost and devel-
opment time for a specific class of software projects. As a

result, similar projects tanded to maintain this equilibrium
so that as the system size increased, the development
schedule I.ncreased correspondingly. This equilibrium also
maintained -he staffing rate,
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2
K/t, (2.19)

within bounds that could be effectively accommodated by the

project. Thus, he used this equilibrium expression to

define system complexity (D) as
3

D = K/t . (2.20)

The value of D can be thought of as a limiting

parameter in determining the minimum development time that
an organization can achieve for a given software project.

Table III shows the values of D determined by Jensen from

Putnam's analysis of USACSC data.
The next equation, developed by Jensen, was referred

to as the software equation, relating the size of the system
to the technology being applied by the developer in the

imlementation of the system. In deriving this equation,
Jensen utilized an extension of the productivity relation-

ship proposed by V. F. Sampson of General Electric Company.
Sampson [22], after reviewing data supplied by

Putnam from 19 USACSC projects, determined that only a
subset of these projects represented a consistent develop-

ent environment and were sufficiently documented to be of
value in establishing the model parameters. Evaluation of
this refined set of data obtained a B value of -0.50 for the
basic relationship between productivity and project stress

instead of the -0.667 obtained when all the data was used.

With Sampson's work in mind, Jensen derived the
software equation to establish the rate of source code
development, dSs/dt. in his development, he assumed that
the portion of the project effort levoted to code produc-
tion, P1(t), was characterized by a Rayleigh curve, which

was complete at td.
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TABLE III

Project Complexity Values

- ilia! a ii er• t_ U

8 Applies to new systems vith significant inter-
face and interact ion requirements within a lar-
Sgr system structure. Operating system and real
time processing developments vi harge percent-
ages of logical code are typical of this class
ot systems.

s15 pplies to new standalone systems developed on
firm operating systems. The interface problem
with the underlyng Qperqt.ng system or other
arts of the system if m 1 Ma.i New applica-
tons software is typical of this class of sys-
tems.

27 applies to complete rebuilds of existing stand-
alote systems where major portions of existing
logic can be used.

55 Applies to composite systems where existing sys-
to ems are combined or integrated with little or
no modification of existing software.

Then if

t /t 1 = 6, (2.21)

d d

where

t 1 the time of peak manloading on the Rayleigh
d

curve, coincidental to development 'tne, and

a d 2 -(3t /t
P (t)dt = (K/t)te d dt = 0. 1/6, (2. 22)

then the burdening rate for this project is/d
.P11dt 0.3934K

- - 92.19, (2.23)" " i 0.95K/6

Pd1 (t) dt
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w here

P(t) z staffing level. The rate of source code devel-

opment, dSs/dt, is assumed to be proportional to the rate of

code production, P1(t) so that

Ss = 2.49 PR Pl(t),

and

2 22 ta /%d t (.
Ss = 2.49 -PR K/t 0 te d dt (2.21

- 2.4P9PR K/6.
-0.5

Substituting the empirically derived value of 
PR = C M

1

gives:

.5
Ss (2.49C /6)K t

or t d'
-•'"Ss = CVR-td , (2.25)

which is the software equation where

C = a developer technology constant.t

This technology constant, Ct, is a factor, or

constant of proportionality, that allows the user to relate

the system size, Ss, the life cycle effort, K, and the

development time, td, for any specified project. The

constant accounts for all variations in the life cycle

effort for projects which have similar size and schedule

properties. The constant is then a measure of the develop-

er's production technology, cr ability to implement the

project. This includes such factors as the availability of

ccmputing resources, organizational strategies, development

tools and methodologies, familiarity with the target

computer, etc.

39
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The technology constant considers two aspects of
production, the environmental aspect and the technical

aspect. The environmental aspect includes those factors

dealing with the basic computing environment. The environ-

mental factors determine a technology constant which

normally ranges between 2000 and 5000, with higher values

characteristic of higher productivity environments; ie.,

from primitive tools to dedicated advanced tools and

resources. The technical aspects of the technology constant

are accounted for through the use of adjustment factors

applied to the basic technology constant by use of the

formula
C = C/ f = C (f , (2.26)

t tb/i=1 i tb t
where

C = basic technology constant,tb

f = ith adjustment factor, and
i

f = total adjustment factor.
t

The adjustment factors include those effects which are

beyond the basic development environment and are project

specific. The factors, which are shown in Table IV, are

examples of those found in a command and control system

environment.

Feeling that his model could be understood better as

a linear programming problem presented in a graphical

format, Jensen defined the additional formulas which he

could use for this forum. The first formula was for thp

development effort (E) which he derived as:

E = P(t) dt = 0. 4K. (2.27)
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T ABLE IV

Technology Constant Adjustment Factors

SFacor 1value

Number Description No

SSpecial display requirements 1.11 10
2 Detail operational requirements 1.00 1.54

3 Changes to operational require- 1.05 1.00:" Rent s

4I Real time operation 1.33 1.00

5 CPU memory constraint 1.25 1.00

6 CPU time constraint 1.51 1.00

7 First software developed on CPU 1.92 1.00

8 Concurrent &DP hardware 1.67 1.00
development

9 Developer Uzi computer at 1.43 1.00~another fa oilily

10 Development at operational site 1.39 1.00

11 Development computer different 2.22 1.00harn target comtpuer1
12 Development at multiple sites 1.25 1.00

13 First use of language 1.80 1.00

14 NIL-STD documentation 1.40 1.00

The next was a relationship (R) determined by the system

size and the developerls approach to the project and vas

4* given by:

" = Ss/C = . (2.28)
"t"d

Then, utilizing the formulas for 8 and D, equations (2.17)

and (2.20), where M represents a fixed staffing rate or
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management stress curve, anld D represents projects of fixed

complexity, he could plot all these equations on a solution

surface for various size projects as shown in Figure (2.3).

to DIFPpCULyy. 0
- - 1APPING PATE. M

- POJECT CONSTRAINT. R

1CC

6.

It 0-

DEVELOPMEINT TIME, t" MONTHS

Figure 2.3 ffacro- !stJaat ing model solution Surface
(Graphica Representation)

For era uplassume a project is defined with a value,
D 15. fo implementation considerations, a 1p ro ject can
be treated as bei.ng more complex than it actua ly is, but
i.t can never be treated as being simpler; thus, the region
defined by 0 < D 5 15 must be considered as a feasible
solution space. The same type of reasoning can be used
with the parameters Ss and Ct In the R curve sthat if
4,the ratio R - Ss/Ct =30 is sgpc4.fied, thes f easible
reg~on 30 :S R <- , is defned. imllarly a value of 3
20 def!.nes a region 0 < R 5 20 since less staff can
always be used than is available, never more. The
4ntersaction of the R and D curve or R an4 M curve
aetermines the minimum development time depending on the
resulting feasible region mapped 6y three curves.
Secondary constraints of developmsent time, tdo and
developmentgeffort can also be Used to define the acasible
solution region. (23)

With respect to either effort or time, the optimum

solution will be located at one of the vertices defined by

the constrai4nt lines. The possibility exists that, once all
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the constraints, D, 3, H, E, and td, are plotted on the

solution surface as shown in Figure (2.1), some of the

constraints will be eliminated from futher analysis by the

manner in which other constraints intersect to form the

bounded region. If the constraints bound a null region,

either the cost or schedule is too optimistic and cost or

schedule overruns in software development are likely to

occur. However, by utilizing the values for K and t
d

90
- -- ll"0lJ5CTCONSTi~r~NT,R /M" 4M-

'. "-OIVULQFMUNT TIME. t8 , MONI"hS

:.".Figure 2.o4 Feasible Solution Region

So-

::: obtained from the graph and substituting -nto the Rayleigh
.-. :":"equation, the optimum staffing profile (Y') can be obtained.

".. Recognizing that t.he calculations made by the model
. assue that the input parameters are exac-tly known, and that
-. there is a degree of uncertainty associated with each of the

- , 22.
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input parameters, Jensen postulated, for risk analysis, that

the deviation from the mean can be calculated using the

relationship
: 2 2 2 2 2 2 0.5

Of - (af/aSs) a + (f/ac) a + (af/aD) a
s t c D

where

f = t~ d /Ss) I/D,

or
3 0.4

f = K - (Ss/C t) D] . (2.29)

Similar expressions for f could be found by using K,

instead of D, as the bounds for the feasible region. in

cases where both M and D interact, the expression for f

should be considered invalid and no alternative solution was

provided.[24]

As an example of this risk analysis technique he

provided the example where Ss a 55,6142; D - 15; s = 2,058;

a D= -1; and t = 0.482. The results were then plotted as

shown in Figure (2.5). The results show that the

probability of meeting the required schedule is 94

percent.[25 ]

2. ZbM lo.el_

A description of some additional models which were

not used in this thesis but the reader might find informa-

tive are provided in Appendix A and Appendix B, as described

by R. Thibodeau and R. W. Wolverton, respectively (26,27].

C. CHAPTER TNO SUMHARY

* The thesis of the models used in this chapter and in

others that were found in the literature, was to try and

give management a tool with which they could predict the

cost of software, the time for producing this software, or
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Figure 2.5 Ina lyis of Schedule Using Graphical
Tcnque

both. lost, if not all of the models require the use of

historical data and/or management's previous experience as a
portion of the predictive process.

It was Putnam's view that software production followed a
Rayleigh curve. This curve, he asserted could be calculated

utilizing historical data to determine the technology
constant (Ck), and the estimate of source lines of code for

'this type of project (Ss), plus the budgeting information

for the total number of man-years for the systems life

cyc le.
The Army Macro model utilized Putnam's technique, but,

at various time increments, would compare actual results
with those predicted and, if the actual resources epended
were statistically outside some preset control limits,
corrective action would be taken.

i "' t i l z i n h i t o r c a l d a t t o d e t r m i e t e t c h n lo5

t e i .............................................................



Parr felt that Putnam's model did not take into account

the effort that was completed prior to the actual starting

date. He, therefore, proposed a model which would take this

work into account in the early part of the project. It also

correlated well with the work done by Norden and Putnam with

the Rayleigh curve, both at the peak level and in the later

stages.

Lehman and Belady found in their study of the evolution
of the 0S/360 operating system programming effort that, as

the size and complexity of each release which contained

functional enhancements increased, so did the number of

errors and, thus, the amount of maintenance effort also

increased. Therefore, they postulated that for any system
there is a time when it is better to restructure and consol-

idate than to continue with additional enhancements.

Jensen felt that Putnam's model required some expansion
and refinement. This he attempted to accomplish through the
use of linear programming and graphical representation of

his results.

44
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I-T. MA1INEANCE =1L LUTIIATZU2 !k ZU~ GREM 1ML RODP.L

The Green/Selby model includes tvo techniques: the first

characterized by a macro approach and the second by a micro

approach. The results of the application of both techniques

L to project planning parameters are compared and then weighed

against managerial and organizational constraints to analyze
tradeoffs and produce cost estimates.

A. NACRO APPROACH

The macro approach is concerned with man-loading across
the life cycle of the project and, in particular, the main-

tenance phase. The basis for this approach is derived from

the relationships pioneered by Norden and further developed
by Putnam. As was stated in chapter two, the various phases

of the software project life cycle have been found, in
general, to be characterized by the Rayleigh curve function.

The function is written as follows:

2
-at

Y' 2Kate , (3.1)
t

where

Y' manloading at any time t, normally measured in
manyears or manmonths,

t = elapsed time from the start of the project,
k - the total accumulative manpower utilized over the

project life cycle, measured in manyears or

mansonths,
and

a - the shape parameter of the curve.
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Norden demonstrated that the shape parameter (coefficient),

a, can be calculated by the equation:

a= --- 2' (3.2)

2t
d

where

t the point in tine of maximum manpower utilization
d

for the project.
It must be noted here that td in equation (3.2) can, in

large projects (defined by Putnam as those projects with

about 75,000 source lines of code [28]), be equated to
project development time. In other words, large piaJects
have historically been characterized by maximum manloading

at the end of the development phase, roughly when the
product was delivered to the user. However, it has been
found empirically [29] that for other than large projects
(less than 75.,000 source lines of code) t d actually falls at
some point between t and the end of the development phase.

0
This may or may not affect the Green/Selby model. The end

of the development phase will be denoted as td ,  if it in
fact does not coincide with t Putnam has indicated that

for small projects (less than 18,000 source lines of code)
Y1 is reached at about t I6. Medium sized projects
sax dev

(18,000 - 75,000 source lines of code) reach Y' somewhere

between t /V and t /2. [30] Therefore, t in this
,vll de

thesis, be defined as the time at which Y' reaches a

naximum.

Substituting equation (3.2) into equation (3.1) gives
the following equation:/

2 2
2 -t /2t

TO - K/t te d • (3.3)
d

'8
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This equation can be used to calculate Y' at any point on

the curve once K and t are known. The calculation or esti-

mation of K and td have been sufficiently dealt with in the

literature and so they will not be addressed here [31].
However, it must be noted that t - t at the point of

maximum manloading, and so, at that point, equation (3.3)

breaks down to:

-1/2
1 = K/t a. (3.4)
max

Norden also stated that the Rayleigh curve exhibited an

*inflection point where the decrease in manpower usage slows

down in the descending portion of the curve r32], as charac-

terized by the equation:

~1/2

t = (3/2a) (3.5)

where
t a= the time of the inflection point of the Rayleigh

curve, and

a = the curve shape parameter

The Green/Selby model is based in the theory that YO
can be defined as a maximum level of maintenance effort for

a project. The minimum level of maintenance effort is

defined by Y' the inflection point on the curve for:.-tim,
the maintenance phase, which, for large projects in general,
has been said in the literature to follow the Rayleigh

d pattern. The definition of t* as a maximum levql of mainte-

nance was further supported by the hypothesis that the

maximum level of manloading during the maintenance phase,
yo ta was equal to *he manloading at the inflection point

* This hypothesis appears to be based on the assumption
tip

that the maximum point of the maintenance phase coincides
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both in time and in magnitude with the inflection point of

the life cycle curve. Green and Selby used the empirical

data synthesized from a spectrum of USACSC projects to

develop the theory. Figure (3.1) depicts their theoretical

model.

Smax I

i '.0" 3 Y' x

i~i. .. 2 0. : 't ip

0 1 1.3 1.73

Time td tip t im

Figure 3.1 Normalized Rayleigh Curve

B. MICRO &PPROACH

The micro approach was developed by Green and Selby

using raw manning data obtained from the IBM Federal Systems

Space Shuttle Program and the unpublished papers of Mr. Kyle

Rene of IBM. This approach uses a matix technique coupled
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with work breakdown structures to project maintenance

manning requirements. The raw data was synthesized by Green
and Selby to fit the macro model and then compared with the

results of the micro matrix method. The authors of this
thesis were not able to obtain data of sufficient complexity

and refinement to apply micro technilues to it, and, there-
fore, the micro approach will not be discussed further in
this work.

C. PROJECTED MODEL APPLICATIONS

The Green/Selby model was presented as a management
tool. The control concept coupled with the planning concept

appeared to be a total maintenance strategy package for the

project manager. The model could provide management with the
determination of a maintenance support level by use of the

inflection point predictors (Y' and Y' ) to definetip tim }

maximum and minimum maintenance manpower utilization bounda-
ries. These boundaries, coupled with a planning strategy,
provide a powerful planning tool.

Use of the model was also projected for forecasting of

resource distribution via integration techniques applied to
the area of the curve under the maintenance support boundary

to break out manpower required by separation of development

work (enhancements, additions, new design) from pure mainte-

nance work (debugging, design error correction) [33]

The model was finally projected as a device for moni-
toring configuration control. Drawing on the work of Lehman
and Belady, Green and Selby theorized that, as a project

moves from pure "fix-it" type maintenance to modifications
which may eventually lead to a new release of the product,
the complexity of the product increases. This rise in

complexity increases the maintenance level. hs successive

releases are developed, the maintenance level increases
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.i. .

until it eventually exceeds the ori-:u§. maximum maintenance
support level of the product. Th. would then predicate
management assessment of the viability of the project from a

cost effectiveness point of view, as the project will have

reached what Green and Selby called a maintenance budget

saturation point. At this point, or earlier, depending on

management policies and desires, the old project would be
terminated and a new life cycle/Rayleigh curve started.

D. CHAPTER THREE SUEMARY

The Green/Selby model appears to provide an easy-to-use
cost estimation tool for the data systems manager. The macro

and micro approaches give fairly quick estimates of mainte-

nance manloading which can be cross compared and coupled
with management constraints to fill out the system manager's

overall strategy. If valid, it seems to partially fill the
void in data systems management, alluded to in the GAO

report, that of the lack of a maintenance strategy in an
organization where maintenance is considered a discrete

function.
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IV. M022EL Z&LIDAT.21

A mathematical development of the Green/Selby model was

completed by the authors of this thesis solely by algebraic

substitution and reduction, working with the basic equations

and relationships from the works of Norden and Putnam. An

empirical development of the model was completed using the

same or similar data to that used by Green and Selby. Both

developments follow.

A. MATHEMATICAL DEVELOPMENT

The Norden/Rayleigh curve equation, as discussed

earlier, is:

2

)--t

T1 2Kate .(11

This equation is characterized as a two parameter equation,

as the outcome hinges on two parameters, K and a, calculated

across the life cycle for all/any times from t 0to t

The parameter, a. as used in the Green/Selby model, is

calculated by:

2
a = 1/2t d (4.2)

The Green/Selby Model appears to have been developed for

large projects with the assumption that t dvand t ddo

develpaetsfolow

coincide. Therefore, if a is substituted into the

Norden/Rayleigh equation, the commonly used form is found:
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2 2
2 -1/2t *tY1 2K*l/2t *tfte dd

which reduces to

2 2
2 -t/2t

'= K/t *t*e d . (4.3)
d

Norden noticed that the inflection point on the project

life cycle curve is characterized by:

1/2
t = (3/2a) . (4.4)ip

If the equation for a is substituted in equation (4.4), t

reduces to:

1/2 1/2
2 2

tip (3/2/2t d ) = (3td ) . (4.5)

Substituting this equation into equation (4.3) gives:

2 2

Y1t = 2K(1/2t d )t ipe d ip
ip

which reduces to

1/2 2 2
2 2 -((1/2t2 ) (3t 2)

yo = 2K(1/2t ) (3t ) e 4 d
ip
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which further reduces to

-3/2
ye t 1.73K/t de . (4.6)t d

ip

In the Green/Selby Hodel, it is theorized that the

inflection point of the life cycle curve and the point of
e' Y on the curve for the maintenance phase coincide. The
max

times t and t are the same absolute time; however, forip
purposes of calculations, they differ, since t , the maximum

manning for the maintenance curve is calculated relative to
the start time for maintenance or the t for the maintenance". 0
curve. If development time is equal to td , as was assumed in
the Green/Selby Model, and if the maintenance effort starts

at t , then the t for the maintenance curve is t for the
d 0 d

life cycle curve. Figure (4.1), with a corresponding time

line, demonstrates the general relationship.

Green and Selby symbolized the elapsed time t to t as
0tm

e

t =t - t ( (4.7)

It is at this juncture that difficulty in the develop-

ment arises. The difficulty lies in the definition of where
the maintenance phase begins. Does it begin at t when thedcv
development phase ends as in Figure (4. 1) , or does it begin

sometime after that? The time to Y' and thus, the shape
max

parameter, a, depend on that definition. Green and Selby,
using Army Data, stated that, on the average, the mainte-

nance phase began at time 1.3 with t normalized to 1 ord
time (t + 0.3t ). Therefore, the estimate of t d for mainte-

d d d
nance curve projection, or t , will be as shown in Figuree
(4.2) and equation (4.8) below.
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Time

Life to td t ip
Cycle __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

Maintenance t 0

Figure 4.1 Maintenance Phase Timing Relationships

The estimate of K for the maintenance phase also came

from the Army data which indicated that, on the average, the

K for the maintenance phase is 20 percent of lifecycle K or
0.2 K (li-fecycie) with lifecycle K normalized to 1.
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0 1 1.3 1.73
Time

Life to td t ip

* Phase to t

Pigure 41.2 maintenance Phase Timing Relationships in
the Green/Selby model

Since it is theorized that t =t~ it can be seen from

Fig ?ur e (4. 2) that

t t -(t 0 .3t .(4.9)
e ip dI

It must be noted here that this development, because of

the nature of the problem and the lack of firm data, cannot

be a pure mathematical development; however, the attempt is
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made to approximate it as closely as possible. Even though
the t or time of T' m in the equations for the lifed ax r

cycle and maintenance curves denote the same type

relationship within their parent equation, the quantities

are necessarily different. As far as the authors know, and

it is projected that the case was the same for Green and

Selby, no specific relationship between td (c) and t (i)d d
have been found empirically. Therefore, for this development

to exhibit credibility, known estimation factors from the

Army data must be introduced. This also tends to indicate

that until some firm relationship between t 's is found,
d

general applicability will be lacking. The same applies for

the K factor.

After substituting the value for t. from equation

(4.5), equation (4..8) becomes:

2 1/2
t (3t ) - t d  0.3t ) = 0.43t . (4.9)e d dd

Substituting the value for t (maintenance phase t ) into
e d

equation (3.4) for the T' of a curve gives:
max

- 1/2Y' = K/t *e,
t e

which reduces to
-1/2

Y9 = 0.2K/0.43t de . (4.10)t d
m

The constant e(-3/2), in equation (4.6), is calculated to be

0.223, and the constant e(-1/2) above is calculated to be

0.607. They are substituted into equation (4.6) and (4.10)

respectively to give:

yI = 1.73K/t a*0.223 or
t 5
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iT = 0.386K/t (4.11)

S-. 
and ip

" Y - 0.2K/O.43t *0.607 or
t d

a

" t = 0.121K/0.43t . (4.12),.t d
a

Attempting to equate Y' to Y' produces:

ip t

0.386K 0.121K
a------------- (14. 13)

0..143t
d d

Algebraic reduction carries the development to completion:

0.43t 0.121K
d -------- and

t 0.386K
d

0. 43 - 0.121/0.386 (4.14)

which gives

0.4300.3 13.

A similar development using K's and t 's alone without the: d
relational factors taken from Army project experience gives

similar results. This is significant since it indicates

that, for large projects where life cycle t ", the

manloading at the maximum point on the maintenance curve is

not necessarily equal to the manloading at the inflection
point on the life cycle curve. There are situations where,

theoretically, with the right values for t , t , and the two
"e

K's, 1' and Y' will be equal, but it becomes apparent
tip . tm

that no such general rule can be demonstrated. Therefore,

the prcof of applicability, as has been the case in all
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areas of software cost estimating research so far, falls
back into the arena of empirical development. The empirical

development used by Green/Selby follows in section B.

B. EMPIRICAL DEVELOPMENT

The present authors, in recreation of the Green/Selby

model, developed it as follows.
All parameters were normalized to values of td and K

equal tc 1. With t - 1 and equation (4.2) calculate a:- d

2
a 1/2 t 0.5. (4. 15)

Substitute a into equation (4.4) and calculate t
ip

- I/2
t • = (3/2a) = 1.73 years. (4.16)': "ip

Substitute t into equation (4.6) to calculate Y'
ip t

ip

2i Y' =2Kat -a(t. )
To 2Kat e tp , and-"t ip

ip

2'. °0.5(1.73)
"= 2(1) (0.5) (1.73) . , and

1.73

yo 1 0.387 manyears. (4.17)1.73

To equate maximum maintenance manloading to the life cycle

inflection point, Aefine the time of maximum maintenance

as t Thus,

ye Ye (4. 18)
ip 2
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U.S. Army Computer Systems Command project data indicated

that, across the spectrum of Army software projects, the

maintenance phase included about 20 percent of the life-

cycle. Therefore, K for the maintenance phase is 0.2K with

respect to the normalized life cycle K value of 1. Here, it

must be assumed that Army data analysis is valid. However,

it is the contention of the authors of this thesis that an

average of all Army large scale software projects will give

a good figure for k/td  for their types of projects. Army

data also indicated that the maintenance phase started at

1.3 years normalized time (t ). If Yi' t at t ,
0 tip tm ip

*then, making the same assumption as green/Selby, that

tip t , the time of maximum maintenance aanloading , t ,
ip e

can be calculated by:

t - t =t , and
m 0 e

1.73 - 1.3 = 0.43 years. (4.19)

Calculate a for the maintenance curve from equation (14.2):
m

2
a 1 1/2t - 2.71. (4.20)
u e

Substitute a and t into equation (14.1) to calculate Y' :
e t

m

2
2Ka -(a (t )• .ye 2Ka t e a q.-- t m •

t me
%U

2- 12.711(0.43 1
Y = 2(0.2K) (2.71) (0.3)e , and

4.

", m

1 = 0.2824. (4. 21)
t

6m
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Use equation (4.4) to calculate tin

1/2
t in , (3/2a) = 0.74 years. 14.22)

The maintenance curve inflection point, t. , on a life

cycle basis, normalizes to 2.04 years. Substltute t intoim
equation (4.6) to calculate Y' :

t
i3

2"'" e" -(a, (tio 1)
ye 2Ka t e a ,

2>. -(2.71) (0.74)
Y' u 2(0.2K) (2.71) (0.74)e , and

+
in

'.1 t 0.182. (4.23)
t

ia

The normalized curve as developed above is depicted in

Figure (14.3).
7Here, Y'9 is clearly not equal to Y'' as was also

found in the satheuatical development, but rather, Y' is.- tE

about 25 percent less than Y't in magnitude, when t and

t coincide.
ip

C. CHAPTER FOUR SUHHARY

In both the mathematical development and the empirical

development, maximum manloading for the maintenance phase

* and sanloading at the inflection point of the life cycle

curve were not found to be equal. Rowever, the maintenance

maximum vas below the magnitude at the inflection point.
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Time td

Figure 4.3 Developed Normalized Curve

Therefore, though the Green/Selby theory, in itself, may not
be substantiated, some relationship/s may exist which can be

used for maintenance manpower estimates. The key relation-
ships in any maintenance manloading estimates appear to be
those of life cycle K versus maintenance K and life cycle td
versus maintenance t . If some empirical relationship (such

d
as, for all large projects maintenance t is X percent of

d
life cycle t or maintenance K is X percent of life cycle K)

d
can be determined, then a model development could possibly

be completed which produces fairly accurate manloading esti-

mates. Such a model would not necessarily hinge on Y. =
t4

Y' but rather some relationship such as that exhibitea bytm
overall Army project data where Y' or maximum average
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maintenance level fell at about 75 percent of Ylt The

difficulties encountered in attempting to develop the ptheory

mathematically, in respect to iffarences in K's and t 's,- d
suggest that there may be other factors affecting the

relationships and the parameters that determine those

relationships. Such factors are discussed in Chapter VI.
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V. REEAC A.NALY§.

A. DATA DEFINITION

The data utilized in the research effort was received

from two sources, NASA Goddard Space Flight Center,

Greenbelt, Md., and Dr. lilla Ehrlich, Bankers Trust Co.,

NY., NY. Both sets of data consisted of manloading for soft-

ware projects over the life cycle and included maintenance
data. Manpover utilization figures were in manhours for the
NSA data and manmonths/mth for the Bankers Trust data. The

NASA data was converted to man nonths/mth prior to analysis.
The projects analyzed will be called NASA project and
Projects A-D for the purposes of this thesis.

Projects A-D were all medium sized projects, devel-

oped at Bankers Trust Company. The few project character-

istics that were known can be found in Table V. A listing of
project data by manmonths/mth is found in Appendix C.

2. U§_A _U=

NASA project data were related to an operational

system and, though it is an ongoing project and the complete

life cycle is not yet known, much information could be
synthesized from the life cycle and maintenance data to
date. Pertinent project characteristics are listed in Table
VI. It is readily apparent that the project started as a

small project, but that it has migrated via maintenance to
what could be called a large project. However, based on
project size at the end of development, it must be classi-

fied as a small sized project. A listing of project data by

manmonths/mth is found in Appendix C.
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TABLE V

Bankers Trust Co. Projects Characteristics

Prjc inns_ izi 2Q1velougnt paintenancl Endin
, medi um 8/78 1/80 12/80

B Medium 8/79 6/80 4/81

C medium 12/76 4/78 12/78

D Medium 3/77 11/77 12/79

B. ANALYSIS PROCESS

The analysis process fell into two categories, curve
fitting, and comparison. Actual life cycle manmonth figures

for individual projects were fitted against the Rayleigh
equation via the facilities provided for non-linear curve

fitting in the Statistical Analysis System (SAS) package
available on the resident IBM 3033AP Computer System. The
Marquardt method was chosen as the regression technique. In
addition, data from the four Bankers Trust Co. projects were

combined by normalizing t (the time to reach Y' ) to I
for each project and then the curve fitting techniques were

applied to the normalized/coabined data. Manpower figures

for the maintenance phases of individual projects and the

combined data were also fitted to the Rayleigh equation and
then, in each situation, actual aata points and fitted

curves for life cycle and maintenance phases were replotted
on a common axis to provide an aggregate picture of the
phase relationships.

The US&CSC data was also reanalyzed. Though it did not

provide substantiation for the specific theory of Green and
Selby, as noted in chapter four, it does provide valuable
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T ABLE VI

NASA Project Data Characteristics

PROJECT HISTORY j
A. Design start date March 1, 1975

B. Maintenance start date July 30v 1977

C. Date of last data January 25, 1982

CODE HISTORY

A. Lines of Code

1. Original lines of code 4,000
2. Modified lines of code 8,141

3. New lines of code 61,230

4. Total lines of code 73,371

B. Nodules

1. Original modules 35

2. modified modules 75

3. New modules 450

4. Total modules 560

C. Documentation

Pages 3,300

insight into the phase relationships as applied to large

sized projects. A mass of raw data was not available, but by

taking the aggregate figures proviled, critical points along

the Rayleigh curve were calculated.

After the curve fitting was completed, the parameters K,

a, and t for the life cycle curves and the corresponding% d
maintenance curves were compared to examine possible common
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relationships. Curve magnitudes at t for the life cycle
ip

and Y' (t ) for the maintenance curve were also compared? ,!-max d
in terms of the general relationships proposed by Green and

Selby.

C. ANALYSIS RESULTS

An excellent fit was obtained for the life cycle curves

for all five individual projects in relation to the Rayleigh

model. rom Table ViI, correlation coefficients ranged from

r2 = 0.776, for the NASA project, to rz a 0.966, for Project

A. The curve fit for the combined Bankers Trust projects

obtained an r2 = 0.869. However, maintenance curves, in
general, did not fit the Rayleigh model well, with correla-

tion coefficients ranging from r? = 0.118 for NASA data to

r2 0.762 for Project B. Projects B and D maintenance

curves best fit the Rayleigh model with r- - 0.762 and 0.747

respectively. These findings indicate that the maintenance

efforts are somewhat erratic, as alluded to in the GAO

study, and, therefore, lo not fit a specific curve well.

when maintenance is not managed as a discrete function,

manloading peaks and drops in an inconsistent manner. This

normally results as managers respond, on a crisis basis, to

provide maintenance activity only when trouble arises.

In t.he NASA data, however, though the overall mainte-

nance data does not fit the Rayleigh curve well, visual

inspection of the curve reveals what appear to be a series

of small Rayleigh-like curves, the combination of which

exhibit an overall rise of maintenance manloading across the

available data, as can be seen in Figure (5.1).

This trend fits well with the project characteristics which

show that the size of the project has grown from 4000 SLOC
to about 73,000 SLOC during i%s life cycle to date. it
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stands to reason that the "ain!-levelopment cycles" for
those modifications/enhancements which created the increase

in system size would, themselves, exhibit a Rayleigh

pattern, but the aggregate maintenance phase would not
necessarily follow the same pattern. The aggregate curves

are included in &ppendix C.
Comparison of parameters gave varying results, as can be

seen in Table VII. Ratios of life cycle K's to maintenance

K's ranged from 0.148 to 1.24 and ratios of life cycle t is
d

and maintenance t 's ranged from 0.625 to 2.82. This seems

to indicate that no general relationship can be derived

which relates K's and t d's for the maintenance phase versus
the life cycle with respect to individual projects. However,

as more data is accumulated and research efforts continue,

those relationships might be found to exist for various

aggregate projects.

when Y' of the individual fitted life cycle curves
tip

was compared to Yt' of the individual fitted maintenance~tm
curves, similar results to those obtained for K and t

comparisons were observed. The ratios covered a wide sDec-

truI. However, when the comparison was made for the

combined Bankers Trust projects curves, the results were

strikingly similar to those of the NASA project and the

USACSC data. USACSC data indicated, as shown in Chapter IV,
that, or. the average, Y' = 75 percent of v . Comparison

tmof actual maximu anloading for the combined Bankers Trust

project data to the inflection point on the fitted life
cycle curve gave Y' . 69.6 percent of Y' . Though only

one projsect, instead of an aggregate, the NASA data also

showed a general behavior of Y' = 69 percent of Y, i'.
For the .1ASA project, this interpretation may
questionable, since some data points lay above the 69
percent of Y' level. In fact, one point lay above Y .

t 0 tip
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TABLE VII

Compilation of Analysis Results

Life Cycle Parameters
NAME a t K max Ytip tp

• ------ a.eeep

NASA Project .003969 11 28.410 1.54 0.9982 19.44

Project A .007143 8 183.374 13.27 8.8586 14.491

Project B .014294 6 137.276 14.08 8.8422 10.25

Project C .007605 8 186.913 13.98 9.0296 14.04

Project D .024288 5 81.383 10.77 6.2905 7.86

Comb'n A-D .598560 1 19.435 12.89 8.2190 1.58j
(norm. td=1)

Maintenance Phase ParametersSNAME a t K I
e max

NASA Project .000525 31 35.234 0.693

Project A .022420 5 27.165 3.477

Project B .019000 5 47.204 5.579

Project C .006000 7 53.127 4.000

Project D .005900 9 56.699 3.740

Comb'n A-D .311000 1.26 8.480 4.080
(norm. tdal)

-- Miscellaneous Parameters

iAME td((M )(M) Y'tm Main Life
....------ Corr. cycle
td(LC) K(LC) Y'tp Corr.

NASA Project 2.820 1.24 .694 .118 .776

Project A 0.625 .148 .392 .511 .966

Project B 0.833 .343 .631 .762 .872

Project C 0.875 .284 .443 .i82 .939

Project D 1.800 .696 .595 .747 .893

Comb'n A-D 1.260 .436 .496 .388 .869
(norm. tdal)
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However, if one accepts the theory that the NASA project ;-s

characterized during the maintenance phase by a series of

"mini-development phases", then the points above the 69

percent level can be interpreted as manning levels intrinsic
4o the development effort and not characteristic of a

general maintenance program. Then the aggregated maximum
maintenance level lies at 69 percent of ' tip*

D. CHAPTER FIVE SUMMARY

The data were analyzed using non-linear curve fitting
techniques to provide life cycle versus maintenace phase

relationship comparisons. The results seem to exhibit inde-
pendence of behavior with respect to values of K and t*'7, d
However, a general trend, within the limited scope of data

available, was found which appears to point to a possible

relationship between maintenance manloading levels and the

* magnitude of the inflection point on the life cycle curve.
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1. INTRODUCTION

The history of the software industry has been marked by

cost overruns, late deliveries, poor reliability and mainte-

nance, and user dissatisfaction. While these problems a-e

not unique to computing, the record seems to indicate that
software developers as a group are less successful in

meeting quality, cost, and schedule objectives than their

hardware counterparts.(34] With this in mind, a number of

models have been developed, as discussed in Chapter IT, to

provide management the necessary tools to more accurately
predict the actual costs and time frames for their software

projects. This thesis attempted to expand the work done by

Green and Selby on Putnam's model, with special emphasis on

the maintenance phase of the software life cycle. This

included a detailed comparison of the peak manloading for

the maintenance phase with the inflection point on the total

life cycle Rayleigh curve.

B. CONCLUSIONS

The software project manpower macro-estimating model, as

presented by Green and Selby, is not a usable model for the

project manager. As was demonstrated in Chapter IV, and

again in the data analysis in Chapter V, the maximum point
on the maintenance curve is net necessarily equal to the

magnitude at the inflection point of the life cycle curve,

though, theoretically, it is possible for the two points to

be equal. It was also found that the absolute point in time

of the maximum maintenance manloading and the inflection
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point may coincide, but, usually, will not. However, these

findings do not invalidate the basic ideas from which the

Green/Selby model were developed. Those basic ideas were

that a relationship may exist whereby maintenance manpower
could be projected by comparison of the maintenance phase

and life cycle Rayleigh curves, or derivations thereof. It
was shown that, within the scope of the limited available
data, only two of the five projects analyzed were character-
ized by maintenance phases which closely fit the Rayleigh

model. However, it was demonstrated that, for combined

project data, within project type, and within a specific
organization, a relationship does appear to exist between

the maximum maintenance manpower utilization level and the

inflection point of the life cycle curve, whether the main-

tenance phase fits the Rayleigh model or not.

In both the USkCSC and combined Bankers Trust Co. data

analyses, and with interpretive license in the NASA data
analysis, maximum maintenance levels were within 65 percent

to 75 percent of the level of Y' . There is not enough... tip
evidence here to show that there exists a general rule that

maximum maintenance will be about 70 percent of the magni-

tude at the life cycle curve inflection point, but the

implications for project managers within individual organi-

zations are encouraging. The results of the data analysis
appear to indicate that, for project type, within an indi-
vidual organization, analysis of historical data and compar-

ison of maintenance levels to life cycle curve inflection

points will provide a general baseline maximum maintenance
support level which the manager can use in outyear mainte-

nance manning projections for future projects. For example,

if historical data for accounting type projects in organiza-

tion X shows that maximum maintenance manning is 65 percent

of the magnitude at the life cycle curve inflection point,
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then the manager can apply that percentage to the projected

life cycle curve calculations for future projects to obtain

a maintenance support projection at the inception of the

project. As the life cycle curve is refined during the
development phase, the maintenance level projections can be

successively refined. This would provide the &DP manager

with a valuable tool in an environment presently character-

*- ized by a general lack of planning and management direction,

.- in the area of software maintenance.

The results of the data analysis further indicate, by
their lack of strong correlation, that there are other

factors which may have a strong effect on the level of main-
tenance required for any software system. This finding is
not entirely surprising, as the authors of this thesis,

after extensive readings in the literature, did not have

much confidence in the possibility of discovering a single,

general, simple decision rule for software maintenance

manning. Rather, the research completed here is only a tiny
bite taken from the mountain of research which needs to be
done. The possible set of constraints and combinations

thereof which affect the software process is astounding. A
few were highlighted by this research effort. It was found

that there was no firm relationship between K's and tdSs of
.. the corresponding life cycle and maintenance phase curves.

it can be hypothesized that differences in K's (total life

cycle manning) are attributed to such factors as project

size, complexity, and project type. It follows that larger

projects will require higher overall manning levels than

smaller sized projects. The relationships of maintenance t
versus life cycle t are affected, in large part, by

complexity and size of the project. Differing system

complexities may place heavier burdens on different phases

of the development processes, and, thus, cause t d  (time of
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maximum manning) to occur at different times for different
projects. There say be, and the authors of this thesis feel

that there will be, no definable relationship between the

point of maximum manning for the maintenance phase and the

corresponding td for the life cycle. Since only two of the
five projects analyzed actually fit the Rayleigh model for

the maintenance phase, it would appear that for some

projects, a definable t would be forever elusive. Only ind
those projects where some type of "mini-development" effort

is completed in the process of providing enhancements or

major modifications will a good fit to the Rayleigh model be

realized, accompanied by a definable maintenance t versus
d

life cycle t relationship for that project.
d

A constraint of even greater importance is the use of

varying software development techniques and methodologies.
It has been speculated that the majority of research to date

has been conducted with data collected from projects which

were characterized by design and coding efforts which did
not include structured, modular-design techniques, informa-

tion-hiding modules, and other software development concepts

and tcols. These projects have shown a very close relation-
ship with the Rayleigh model. k tremendous impact on the

entire arena may be seen with the increased use of the above

listed design techniques. How these techniques will affect
the software equation and, in particular, software mainte-

nance, is yet to be seen.

The rise in maintenance activity for the NASk project,

as new developments apparently added modules and source

lines of coda to the system, seems to support the results

obtained by Lehman and Belady, as 4escribed in Chapter II,
that, as enhancements are added to the original project, the

maintenance level required to support the project also

rises. This could be attributed to the fact that the
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addition of enhancements adds complexity to the system
which, in turn, causes a resultant increase in the mainte-

nance level required. As was discussed earlier, and as is

seen in the NASA project data, if enhancements continue, the

maintenance manning rises above the magnitude of the inflec-
tion point on the life cycle curve. This could also indi-

cate that the point in time at which the project should be

totally rewritten and restructured as a new project has been

reached, and any further development-like effort on the
system should constitute the inception of a new project.

C. RECONHENDATIONS

One of the most difficult problems encountered in the

preparation of this thesis was locating organizations which
had compiled and/or retained historical data from their

software development and maintenance efforts. Some of the
organizations contacted had maintained some form of histor-

ical data, but they had not broken their information down

into a format which could be used to obtain information

about the separate phases of the software life cycle.

Therefore, if any meaningful research is to be conducted in
the future in this area, organizations which are responsible

for producing or maintaining software products need to start
accounting properly for the various costs associated with

this process. Proper accounting includes, not only tracking
the number of source lines of code produced for the project,

but total man-hours expended in each phase, the actual time

frame for each phase, and the applicable complexity factors.

The collection of this data, howeviar, must be an ongoing
process, just as is proper documentation of software, and it

should become a part of this documentation. By making the

collection process an ongoing process, the data is always

current, and less subject to error. For, like any other
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form of documentation, if postponed until the end of the
project, it is subject to a host of errors, omissions, and
inaccuracies. However, even if the collection process is
done with total perfection, it means nothing unless the data
is recorded in such a manner that it can be retrieved and
understood easily. It is therefore recommended that this
data be stored in an automated data file so that it can be
accessed quickly and analyzed with greater ease and effi-
ciency than with a manual system. With the cost of software
rising at an ever increasing rate, the benefits of this
information to the organization, seem obvious. Not only

should it be better able tc predict future software manning

requirements, but also, it should be able to identify and
correct other inefficiencies within the development and

maintenance processes.
As noted by GAO, and as indicated by the NASA data, a

generally accepted but uniform definition of software main-
tenance is not now in existence in the majority of organiza-
tions. in addition, management is not presently requiring
that software maintenace be managed as a discrete function.

This leads to many problems for management at various levels
of the organization. As such, it is recommended that the
definition proposed by GAO be adopted as the uniform defini-
tion of software maintenance. It also is recommended that

software maintenance be accomplished as a discrete function
within the organization. rhe adoption of the GAO definition

will leave a grey area where enhancements to the old project
stop and a new project begins. However, if management

formulates a project maintenance strategy which includes the
development of a maintenance support level, whether it is
based on a percentage of the magnitude at the inflection
point on the life cycle curve, or on some other management-

defined function, a point will exist above which management
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should decide to terminate enhancements to that project and

start a new project. This project would be developed as a

follow-on to the old system. The old project should be
terminated or continued with a minimum maintenance support

* level to effect necessary repairs until the new system comes

online.

Although there appears to be a strong correlation

between peak maintenance manloading and a fixed percentage

of the manloading at the inflection point of the total life

cycle Rayleigh curve, further work needs to be done to
determine if this relationship holds true throughout the
software industry. This work should include comparisons
across all types of software and comparisons within each
class to determine if there is a value that management could
use as a planning tool for the type of software they are

producing. Follow-on research to this thesis would be most
beneficial if completed in the following manner. A larger
base of life cycle/maintenance data must be collected to

provide a better picture of the relationships concerned and
to obtain a higher percentage of validity in the findings.
Projects need to be analyzed individually, grouped by

project size, grouped by type of system involved, grouped by
complexity factors (if known), and grouped within specific
organizations as well as a total combination of the
collected population. Research should be done to examine

potential relationships of 's, t d's, and YT' versus Y'

for the corresponding life cycle and maintenance curves. A

particularly important area of research will be the effect

of new software development techniques on the software equa-

tion. Any data collected on projects which were developed in

this manner should be segregated and analyzed se..arately.

The potential for research in this area is unlimited in
scope and in promise.
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A. INTRODUCTION

Robert Thibodeau, while working for General Research

Corporaton, was contracted by the Air Force to conduct a

study of the various models currently avalilable for soft-

ware cost estimation. This appendix consists of excerpts

from his review.

B. 1EROSPkC! MODEL

The model was developed using regression techniques

applied to data from software development projects charac-
terized by one-of-a kind computers, limited support soft-
ware, software, special languages and severe memory size and

speed requirements. The data were stratified into two
groups. One group contained 13 projects for the development
of real time software identified as primarily large-scale

[a-.

airborne and space applications. The second group consisted
of 7 operational support programs presumably without the

size and speed requirements of the first group.

The model description is not clear concerning the exact
composition of the estimate of effort required to develop

the software. Only the total effbrt is extimated. The
estimate is made using a relationship of the form:

b
3M a (Instruction)

where the constants, a and b, are determined by regression

analysis.
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The estimating relationships are:

IaA1 Z~uSoftware
0.94

MR = 0.057 (I)

1u2210r S2Z~t ul
0.404

KM 2.012 (I)

where:

HE = total development effort, manmonths

I = number of instructions (independent of

language)....

C. DOD MICRO ESTIMATING PROCEDURE

The primary estimating relationship comprising the DoD
Micro Procedure can be described as the ratio of a factor

representing the software to be developed or changed and a

productivity measure.

The model form suggests that effort increases directly
with the number of input and output configurations operating

on the system being built. Effort also increases with the
number of routines being created or modified weighted by
their difficulty. The total effort is scaled according to

the amount of work that must be done in entirety as opposed
to modification of an existing system.

The number of days needed to deliver the product (effec-
tively the days of effort per unit of product) depends on

the general experience and accomplishment of the development

group (measured by their job classifications) weighted by
their kncwledge of the problem to be solved relative to the

knowledge required. One other factor that directly affects
the productivity is the ease of access to the computer

(measured by turnaround time).
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the basic form of the estimating relation for software

development time is:

Net Development Time = (Product) / (Productivity)

Where:

Product is a measure describing the effort to be per-

formed.

Productivity is the rate of creating the product from
the application of personnel time.

Product = (Number of Formats + Weighted Number of

Functions) x (Effort Relative to a New

Development)

The terms in parentheses along with the following terms
are defined in the discussion of model inputs below:

-1
(Productivity) = (Work Days per Unit of Product for a

Staff with Average Experience)

x (Job A nowledge Required)
x (Job Knowledge Available)
x (Accs s)

The result is the total hours required for code develop-

ment. Presumably this means detailed design, coding, and

unit testing.

Gross Development Time = (Net Development Time)

x (Other System Factor)

x (Non-Project Factor + Lost
Time Factor)

A value of 1.8 is recorvended for the other system

factor. This factor represents the effort needed to convert

the code development time to total levelopment time. This
value is representative of an observed range from 1.2 to

2.1. Total development includes analysis, design, coding,
testing and documentation. It is the sum of the project

direct charges. hether this includes support hours fo:
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clerical and other functions is not clear, but any given

organization could include these by modifying the 1.8

factor.

The net development time accounts for the time lost from
normal scheduled working hours for leave, sickness, holi-

days, and non-project assignments. These add 25 percent to

the total development time. There is also a 10 percent

efficiency factor (coffee breaks, time cards, code rework,
etc.). The code rework should probably be handled else-

where. It is probably included where it is to make the 10
percent palatable. It should be included in the gross size
adjustment and the 1.8 factor.

The effect of these adjustments is to estimate the
number of personnel who must be assigned to the project to
ensure delivery of the total development hours. These

factors are orgainizational specific.

Although the resource estimating procedure includes
weighting factors for the input and output formats by type

of device (see subsequent discussion), the factors have a

value of one in each case. Therefore, the model describes a

linear relationship between the total number of file formats
and the effort required to implement them. It may be that

future versions of the model will weight the types of file

device differently. Then the effort required to implement a

report format may be different from the effort required for

a card format.

Program complexity, which is the second term in the
product measure, is the weighted sum of the functions to be

implemented. The weights depend on the function and its
assumed level of complexity. the weights range from 1 for a

simple operating system control language change to 12 for a

very complex edit-validation function.

.-. 8
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The value 3 is the most common among the 24 possible

function-complexity assignments. If the function types are

equally represented in programs, the average value is 4.

The programmer/analyst experience factor is an indica-

tion of the effect of experience on productivity. Values

range from .75 to 2.75 corresponding to a lead analyst to

programmer and interns respectively. Since experience is
not evenly distributed over a group of programmers and

analysts, the following groups was hypothesized in order to

obtain an average or representative value for the experience

factor.
Number weighted

Experience in Group Factor Sud

lead 1 .75 .75

Senior 2 1.25 2.50

Journeyman 4 1.75 7.00

Nominal 8 2.25 18.00

Intern 5 2.75 13.75

20 42.00
Average Value 4 #2 / 20 - 2.1

No definitions are provided for the 10 job classifica-
tions. The job knowledge and turn-around time factors are
self-explanatory.

The System Factor adjusts the product development effort

to acccunt for work already done. The product measure

resulting from the format count and the program complexity

value is the same whether the system is being developed in
*' its entirety or it is a modification to an existing system.

The syste factor has the effect of modifying the product
value to account for less than total 4evelopment.

Seven levels of change are described by the System

Factor. The values range from 2 for a new development to 8

for an operating systems control language change.
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For a new system development the 2 in the primary esti-
mating equation is divided by a System Factor value of 2 and
the product measure is unchanged. Consequently, the System

Factor values describing lesser amounts of new development
have larger values and are portions of 2. The effect of the
System Factor on the product measure is summarized as
follows:

Effort Relative to
Type of Effort System Factor a New Development

New Development 2 1.00

Major Change 3 .67

tajcr modification 4 .50

minor modification 5 .40

maintenance 6 .33
minor Technical Change 7 .29

Operating Systems
Control Language Change 8 .25

In order to get a feel for the relative magnitudes of
the components of the micro Estimating Procedure, consider

the following example.
Number of I/O formats - 10

Number of functions - 20

Average complexity factor = 4.

New Development
Product = (Number of Formats + Weighted Number of

Functions) x (Effort Related to a New

Development)
Product = (10 + 4 x 20) x 2 / 2 = 90

Experience = 2. (See above for computation)
Job knowledge required = 1.0
Job knowledge available a 1.0

Access - = 1.0

(Productivity) a (Work Days per Unit of Product for a

Staff with Average Experience)
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x (Job Knowledge Required)

x (Job Knowledge Available)

x (Access)
" 2.0 x 1.0 x 1.0 x 1.0 = 2.0

Net Development Time = (Product) x (Productivity-

a 90 x 2.0 = 180 Man-Days
if the effort was a major modification (System Factor =

4), the Product value becomes:

product = (10 + 4 x 20) x 2/4 = 45

and

Net Development Time = 45 x 2.0 = 90 Man-Days

If the Job Knowledge Required is "Detailed" (Factor =

1.5) and the Job Knowledge Available is "Limited" (Factor =

1.5), and the productivity becomes:
-1

(Productivity) = 2.0 x 1.5 x 1.5 x 1.0 = 4.5

then for the major modification:

Net Development Effort - 45 x 4.5 a 202.5 Man-Days

The primary output (i.e., the output that is sensitive

or controlled by project variables as opposed to the subse-

quent step which is a fixed allocation) is: Gross

Development Time (man-days). Gross Development Time

includes:
* Nonproject time (individual assigned to project but busy

with nonproject tasks, e.g., training, nonproduct admin-
* istrative duties, etc., and vacation and holidays)

* Wasted or lost time
therefore, Gross Development Time describes the staffing

level that will result in a needel amount of development

time. The latter is predicted by program and project

characteristics.
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The secondary outputs (i.e., those derived by applying

fixed values to the primary output are:

• Effort by project phase

* Total development cost

The project phases are:

* Review and analysis
* Design

* Programming

* Testing
* Documentation

Gross Development Time includes:

&nalysis of present methods

Design of the ne/changed system

Develop the system' s support

Program design
Program development

Program testing

System testing
Installation and conversion

Staff training
-' Project officer

System manager
Technical managers
Support personnel
Documentation

i2. Mt iI1,.XIa Dt§. The software is described by

the numbers of types of items it processes and the numbers

of functions it includes. The functions are described

according to type and complexity. The result is two product

descriptors: one measures the size of the input/output

processing to be executed by the system; the other is a

measure of the number and difficulty of the functions to be

performed.
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input Z Fojaj. The number of different formats to
be read by the system are counted and added together. The

model asks for numbers of card, tape, disk, and screen

formats separately, but since the weighting factor is always
one, there is no distinction made among them regarding the

effort involved to implement them.
2zt.ut U F gle zala. The formats output by the system

are totaled. The same entries as for the inputs are

requested plus the number of report formats. As in the case
of the inputs, the weighting factor for the different types

of output is always one, so there is no reason to
dif ferentiate.

Proraji o xi J. The total program complexity

measure is computed by a weighted sum of the number of

processing functions of given types. Each function is char-

acterized as simple, complex, or very complex. The

processing functions are:
* Edit Validation

Table Look-Up (Internal or External)
• Calculations
. Sort/Merge Process

* Internal Data Manipulation
F Pile Search

o Utilities or Subroutines
* operating Systems Control Language

Job K&2 de.s IJMUj4. The amount of knowledge
required to implement or change a system has a direct effect

on the number of hours required to accomplish the project.

A system that requires very detailed knowledge will require
more effort than one that can be azcomplished with limited

knowledge. This parameter is paired with the job knowledge

available factor described below to describe the relative

influence on productivity. Three job knowledge levels are

used: Limited, General, Detailed.
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System F . The effort required to complete a system

development or change project of given complexity depends on

the state of the system. That is, the work required to

develop a system with three file formats, all other factors
being equal. The System Factor describes the level of

effort being undertaken. Seven levels are described:

* System development

M Major changes

M Major modification

M Minor modification
M Maintenance
m Minor technical change

Operating systems control language

Proorazmer/Inalyt Lzp._rae &i lable. The available

experience measure is an effective productivity indicator.

It quantifies the rate at which the product can be produced

in terms of the job classification of the staff available
for assignment to the system development. Two data

processing personnel classifications: Analyst and

Programmer, are tabulated according to five levels of expe-

rience: Lead, Senior, Journeyman, Nominal, and intern.
Weights are associated with the difference experience

levels. The result is a weighted average productivity

factor.

., k Za.Xl11d_. VAiJa._ This factor has the effect of
describing the change in productivity associated with the

level of knowledge about the work to be performed that
exists among the persons available for assignment. It works
together with the Job Knowledge Required factor described

above to quantify the effect of the knowledge of the system

required compared to that available on the time required to

complete the work. In general, the effect of the combined
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factors is to increase the development manhours if the need

exceeds the available and decrease the hours if the avail-

able exceeds the need. Three levels of job knowledge avail-

ability are specified: Limited, General, and Detailed.

Proran TuqrnD-ulnd Tin. The effect of computer access

on productivity is described by four levels of average

turn-around tine:

o Interactive terminal

9 More 'han one run per day
* One run per day

* Less than one run per day.

D. DOTY ASSOCIATES, INC.

Desciption gj the q2"e1
The model is actually a set of 15 estimating relation-

ships. Rach one to be used for a given type of software and

software life cycle phase. Equations have been derived

empirically using regression analysis for the following

types of software:

* Command and Control
* Scientific

o Business

. UtilitV

The devolopment effort for software representing each of

the application types may be estimated usipg one of three

different relationships. An additional three are given that
are applicable to all types of software. These equations

are to be used "when the application cannot be categorized
or is different than the categories noted". The procedure
specifies that when a software system is made up of subsys-
tems that are different types, the total size should be

divided into the four categories and the appropriate esti-

sating equation used for each one. Then the individual
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manonths are summed to give a total system development

effort. The three equations are divided into size measure

(lines of source code or words of object instructions) and

the life cycle phase in which the estimate is made (Concept
Formulation and all others). If the estimate is to be made

using the words of object instructions, the same equation is

used in all life cycle phases. Similarly, for estimating

large systems (more than 10,000 lines) using lines of source

code requires the use of a different equation in the Concept

Formulation Phase than in the other life cycle phases.

The use of the different equations can be described as

follows (A, B, and C refer to the three different

relationships).

ESRPINOHSSOFTWARE LFE CYCLE PHASE.DESCRIPTION OCPT OHR

V ORDS OF OBJECT CODE A A

LINES OF SOURCE CODE I I
LARGE SYSTEM > 10K LINES B B

------------------e a eI SMALL SYSTEM > 10K LINES B I C

The forms of the estimating relationships are similar.

Equations A and B are of the form:

b
MR a I

where

MM - Mannonths of development effort.

I either words of object code (A) or lines of

executable source code (B).

a,b a Constants obtained empirically.

Equation C has the form:
d 1L4

MIN cl Z f
S=1J1
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Where

fi = a set of parameters describing the development

environment.

c,d = constants obtained empirically....

The following guidelines are presented for selecting the

proper estimating relationship.

* In Concept Formulation, if the size of the program in

object code is known, use the object code estimators.

They will give more accurate estimates of manpower

requirements.

* If accurate estimates of manpower requirements are re-

quired in the Analysis and Design and subsequent phases

of development, use equation B, in source code, for

programs of I > 10,000 and equation C, in source code,
fcr programs with I < 10,000.

* For budgetary purposes, use the equation that gives the

higher estimate.
Development time is estimated using the equation

10001

.667
92.25 + 2331

Where

D Reasonable development time in months

I a number of delivered object instructions.

This relationship was obtained using regression on data

describing 74 development projects. The time estimate

should describe "customary" distributing of effort over time

that is, it should avoid extremes of project time compres-

sion cr expansion.

It should be noted that a large portion of the documen-

tation accompanying the description of the D&I estimating

procedures is devoted to discussions of factors that are

believed to influence the cost of software development.
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These factors are classified according to aspects of soft-
ware and its development environment. The factors are

grouped according to the following "domains":
ft Requirements
"  System Architect ure/n ginee ring

* Management

The estimate of total development cost is based on
several relationships that portion the cost into components

that can be estimated by applying available ratios to other

costs and factors such as overhead and administrative costs.
By the proper use of relevant values for these factors the
relationships can represent either goverment in-house costs
or contractor development costs. A method is described for
tine phasing the expenditure that is said to satisfy the

requirements of DoD Directive 5000.1.
The procedure identifies costs that are incurred by the

government during all phases of the software life cycle

-SnIg Operation and Support. The total development cost
includes:

C C C + C + C
CF VAL FSD

where

C a Development Cost

C = Conceptual Phase Cost- CF

C - Validation Phase Cost
V AL

C a Full Scale Development Cost.
F SD

Information is included that relates the government cost
to the ccntractor's full scale development cost. This cost

is the one developed by the formal software cost estimating
procedure.
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the cost of development is divided into primary and

secondary costs, thus:

C -C + C
D P S

where

C - Cost of Development
D

C = Primary Cost (Manpover)

C = Secondary Cost (Computer, Documentation, Etc.)
S

then,

C *HN (C
P e

where

M = Total Development Man-Months

C = Average Labor Cost
e

and
n

C = XC= kC -
si-1li P

Therefore: C = (MM)C (i+k)
D e

where

k = Ratio of Secondary to T z.ary Costs(=.075)

The total software development cost (does not include

government Conceptual and Validation Phase costs) includes

the costs of:

* Analysis

* Design

Code

* Code

* Debug

* Test and Checkout

and is proportional to the total man-months of development
effort.
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=AJ1 Develyagt I"-Mouth!
This is the primary output variabl,. It is the basis

for the total development cost estimate and it is the value

from which the distribution of effort by life cycle phase is

derived. The hours include those directly related to the

development of the software system. They include the direct

hours needed for:

Analysis - interpreting the system requirements and

producing viable alternative system concepts

Design - preparing detailed designs of the data processing

system and the individual programs

Coding and Debugging - writing individual modules and

programs and performing individual tests

Testing and Checkout - integrating the individual subsys-

tems into a complete system and conducting prescribed

tests on the entire system.

The discussion of the model does not indicate the extent
that support and management hours are included in the total.

Also, there may be some question about the activities asso-

ciated with concept development (e.g., is the test plan

furnished by the government following the validation phase

or is it developed as part of the project). As in many cost

estimating situations, the line between concept analysis and

the evaluation of solutions to selected concepts is hazy.

Although the DAI documentation and discussions with the
authors indicate that the model includes integrated sistem

testing, it appears that this effort is not included in the

original SDC data which was the basis for the curve fits.
(76% of the SDC data points describe programs that do not

interface with any other programs).

Sotwr 21_3IJ.2D U q2

A nominal development time is presented that implies

"customary manloading". That is, the schedule does not

reflect either crash projects or allow for unnessary delays.
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The expenditure of time and effort associated with major

project milestones is given for small projects (one level of

supervision) and large projects (more that one level of

supervision). The distributions are for nominal projects

and do not allow for any possible acceleration or delay of
the completion of the project....

DAI has been very care full to describe the size vari-

ables which are the primary inputs to the estimates using

the relationships. However, we should point out that the

respondents to the original SDC questionnaire were not so

well directed and it may be necessary when analyzing the

structure of the model as it relates to prediction accuracy

that significant errors may have been introduced by this

failure to be specific. The DII model may not overcome what

are inherent limitations in the data.
The D&I procedure calls for several estimates in support

of the DSARC process. It recognizes that the best estimates

of program size are obtained later in the development cycle.
It suggests, then, that the interpretation of the program

size changes during the life cycle and that associated with

the change are increases in estimating accuracy. The report

describes how the knowledge of the size estimator changes
during the life cycle and how this affects the estimating

precision. The precision associated with the different size

measures during the system development life cycle is as
follows.

Code that is developed as part of the project but is not

delivered to the customer is a source of variation in the

estimate of the system size and must be considered.

* However, no guidance is provided for making any adjustment
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other than citing that the SDC data shoved delivered code to

average 77 percent of the developed code with a standard

error of 30 percent.

%.

SOFTUARE ESTIMATE WHEN SIZING BASIS X ERROR

1. IITIAL PPCCRAG CCNCEPTUAL PHASE TOTAL OBJECT CODE UP TO 2003'
SUOCETARY ESTIMATE

2. |NOEPENOEIT PPGRA1 YALIDATION PRIOR TOTAL OBJECT NINUS UP TO OO
LCA COS TO RFP RELEASE DATA AREAS:iFSTIF*ATE ESOA

3. IhCEPEMOEIT FSO COMPLETION OF TOTAL OBJECT MINUS UP TO 915
CSI ESTIPATE SYSTEM SPEC CATA AREAS W TH

THROUGH PCR ADJUSTMENTS FOR

4. UPOATE ?FFJ POR THROUGH TOTAL SOURCE CODE UP TO SnXcc 1CS ES AT REAI|NDER OF [#*PROVING
DEVELOPMENT TO ZERO AT

CCMPLETION

*THE ACTU *IY BE 200 PERCENT OF THE ESTIMATED OR THE ESTI4ATEO MAY SE 200
FERCET O TI-E ACTUAL.

allowance must also be made for support software devel-

opment especially when working with new hardware.

=11, Oblet IQ=4.
During the Conceptual Phase when very little is known

about the system to be developed, the initial estimate is

made using the analyst's judgement (usually by analogy with

previously developed systems, but other methods are

possible) of the number of object words occupied by "ever

program needed to run and maintain the system in the field".

This measure is obtainable from listings of computer system

routines that build executable programs from the output of

the compiler. Taking values from systems similar to the one

being planned can provide a basis for estimating the value.

Care should be taken, however, when program overlays are

involved. Also, extensive use of standard library routines

can greatly increase the words of object program size and

not be representative of a comparable increase in develop-

ment effort.
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The memory space occupied by an executable program is

composed of locations containing instructions and locations

reserved for the data upon which the program will operate.

Sometimes the data storage areas are significantly larger

than the area occupied by the actual instructions. DII

suggests that the effort required to develop the programs is

more closely related to the size of the instruction space

than to the size of the combined data and instruction

storage. However, as in the case of the total object words,
there is no evidence of this distinction being made in the

original derivation of the estimating procedures. Also,

there is no guidance provided on how to apply the additional

information when preparing cost estimates. Some computer

system executive processing routines provide this informa-
tion. However, many don't and, therefore, it would be very

difficult to obtain comparable historical information to

guide new estimates.

.Jg Objec !2.ri WJ111 21
only the writing of new code contributes to the software

development effort (if code written to modify existing

modules is counted as new code). To account for the work

done to adapt existing code to a new system, which includes

analyzing the code and deciding how to modify it, any

existing module that will result is less than 50 percent

utilization of existing code is considered to be entirely

new.

Counts of new source lines written (whether in a higher

order or machine oriented language) can be obtained from

compiler listings, measuring card decks or text editors. It
is one of the easiest measures of size to obtain. As in the

previous case, modules containing less than 50 percent

reused code are considered to be new.
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For estimates made using lines of source code where the
size is less than 10,000 lines, the estimating relationship

includes a number of factors describing the development
environment. These are included in the estimate when the

indicated item is to be part of the development process....
fI Special Display

f2 Detailed Definition of Operational Requirements

f3 Change to Operational Requirements
f4 Real Time Operation
f5 CPU Memory Constraint

f6 CPU Time Constraint
f7 First SV Developed on CPU

f8 Concurrent Developed on CPU
f9 Time Share Verus Batch Processing in Development
f10 Developer Using Computer at Another Target Computer

f 11 Development at Operational Site

f12 Development Computer Different from Target Computer
f13 Development at More than One Site

f14 Programmer Access to Computer

After analyzing the method used by DAI to obtain their
estimating relationships and after comparing their defini-

tions of input and output variables with the original
sources of data, it is clear that there are discrepancies

between the way the data are being applied and what they
originally represented. DAI does not explicity justify
their approach but their presentation of the estimating
procedure does give consideration to errors arising from

differing definitions of the variables.
DAI seems to be saying that consistent use of the esti-

mating procedures regardless of how they were obtained will
1produce results with at least a predictable error. That is,

knowing the range of error that can occur because of
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differences in definitions and ability to predict the input

variables will, when applied to the given estimating rela-

tionships, produce estimates with precision that is in

accordance with previous ezperience. DAI further substanti-

ates the approach of throwing all the error into the ability

to define the input by presenting standard error values for

the size variables at different times in the life cycle.

2. FIRE AND ZAGOESKI MODEL.

2ur&2a 21 the =Ail
System Development Corporation completed several

projects for the Air Force, Electronic Systens Division in

which they attempted to develop methods for predicting the

cost of softwa'e development. The Parr and Zagorski model

represent an intermediate stage in the program.

Usina historical data from internal projects and from

other oL~dnizations, the SDC team systematically tested over

100 variables to learn if they were satisfactory predictors

of program design, coding and debugging effort.

Parr and Zagorski published three equations which were

determined to be the best predictors tested up to that tine.

Ma a 2.7X + 121X + 26X + 12! +22X - 497 (1)

H = 2.8X + 1.3X + 33X - 17X + 1OX + I - 188 (2)
6 7 3 8 9 10

HR =8.4 +1.81 + 9.7X - 3.7 - 42 (3)
11 12 3 13

H is the number of manmonths needed to design , code

* and debug a single program. The effort begins when a

programmer cr analy-st is given a complete operational speci-

fication for a program and it ends when the program is

released for integrated system testing.
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- number of instructions in original estimate (in

thousands)

2 subjective rating of information system complexity
(scale 1-5)

1 3 number of document types delivered to customerx3

I - number of document types for internal use
'4

1 = number of computer words needed to store programI .; 5
data (log )

10

X = number of instructions in delivered program (in
6

thousands)
.7 = number of man-miles for travel (in thousands)
7

1 8 u system programmer experience (average of total years
8 of experience with the computer, language, and

application)
9 - number of display consoles

I - percent of instructions new to this program (not
10 re-used from preveios versions)

11 - number of instructions to perform decision func-
tions (in thousands)

X 1 number of instructions to perform nondecision
functions (in thousands)

a - programmer experience with this application (aver-
13

age number of years).

F. WOCLVERTON

Estimates of routine size are converted to costs using
cost per instruction values that are functions of the

101

,% . . -



. .

routine type and complexity. The costs are fully burdened

and when summed for all the system routines represent the

total system development cost. Development extends from

analysis and design through operational demonstration. A

matrix of ratios is used to allocate the total cost to 7

phases with each phase divided into up to 25 activities.

This allocation is compared from the standpoints of staff,

schedule, and general credibility.
The model, then, is a combination of formal algorithm

and judgement. It has been used successfully at TPW. As
described by Wolverton, it features a data base of histor-

ical data that provide the necessary cost per instruction

and allocation values. The procedure is adaptable to any
new environment by creating a new data set representing
local definitions of phases and activities and burdened cost
conventions. In fact, Wolverton cautions that the given
values cf cost per instruction are for illustration and

users should prepare their own values.

TR has computerized the maintenance of the cost data

base and the allocation process. Given the inputs of size
and complexity, the system calculates the cost allocations

and facilitates any subsequent adjustments. Since most

models are used in a similar manner, even if the procedure

for using the model does not say so, there should be no

compromise of the model's performance if the evaluation is

based on a single estimate of costs. Other adjustments that

are necessary to execute the model in different environments

will be discussed later.

The estimating procedure begins by identifying all ths
routine comprising the system. Each routine size, category,

and relative degree of difficulty are estimated by knowl-
edgeable persons.

10
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The categories that have "stood the test of usage" at

TRW are:

. Control routine

. Input/Output routine

P Pre or Post algorithm processor

Algorithm

, Data Management routine

- Time-Critical processor

Relative difficulty is indicated by six levels depending

on whether a routine is Old or New and then by simply: Easy,

Medium or Hard.
....Multiplying the cost per instructin for each

routine by its number of object instructions and summing the

products for all the routines yields the estimated total

development cost.
The development cost is allocated to the following 7

phases using proportions for each phase that were obtained

from the historical data base.

A. Performance and Design Requirements
. Implementation Concept and Test Plan

C. Interface and Data Requirements Specification

D. Detailed Design Specification

". Coding and Auditing

F. System Validation Testing
G . Certification and Acceptance Demonstration

Then, the cost for each phase is divided into up to 25

activities....
A matrix of computer hours by phase and software type is

used to estimate computer usage costs for development.

The given cost values are in 1972 dollars. The value of
cost results from applying "bid rates" to labor costs which
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accounts for fringe benefits, overhead, administrative

expenses and other indirect costs. Documentation and travel
costs are added to the labor costs. Finally, estimates are

made of the computer costs. The distribution of the costs

by phases and activities were described above.

Cost is not a suitable basis for evaluating the

different software estimating models because of differences

in accounting practices among organizations and because of

inflation. Therefore, the Wolverton cost values were

converted to manmonths using an average burdened cost per

manmonth of $4600. This value was obtained from the article

describing the TRW estimating procedure and, therefore,

should te representative of the cost environment.

-instructions
The model input measure of size is applied to programs

or routines. These are taken to be functionally distinct

elements of a system that would be developed independently
then intergrated into the delivered system. It is expected

that these would be independently operable using test

drivers. Such a definition is consistent with industry
usage. The reference document is not specific on this
point. The term "instructions" is taken literally. This

means estimating the number of instructions in the execu-
table program exclusive of any data areas. The number of

instructions may be estimated by obtaining the words of

memory occupied by the executable code and dividing by the
average words per instruction.
So tvr q aori _ s

Each routine is characterized according to one of the
following categories:
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C. Contr2l RA2g" . Controls execution flow and is

nontime critical.
I. In uput j9.ne. Transfers data into and out of

comp uter

P. Pr 22t !I PN coj ,jjs_. Manipulates data

for subsequent processing or output.

A. Algort. Performs logical or mathematical opera-

tions.
D. aJ nanaemn jao e. Manages data transfer

within the computer.

T. T Critical =Ms9jo Highly optimized machine

dependent code.

Wolverton indicates that any numeric representation of

complexity may be used. The main purpose is to distribute

the cost per instruction values over the range of experience
for a given category of software. He suggests a simple

designation of old or new, depending on a loose interpreta-
tion of the amount of reusable code, and easy medium or hard

compared with other programs in the same category.

F."
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A. INTRODUCTION

R. W. Wolverton studied several software cost estimating

models while working for TRW in an effort to determine that

model which would best predict those costs associat with
software development. This appendix consists of e -.rpts

from his review of some of these models.

B. BOEING COMPUTER SERVICE COST MODEL

Boeing Computer Services (BCS) designed this analytical
model to provide an estimate at proposal preparation time of

the number of manmonths needed to design a computer program.

BCS developed the model for use as an internal guideline to

cross-check the traditional bottom-up estimate made by their

proposal manager. The bottom-up estimate, with its WBS was

tacitly assumed to be more accurate and the model served to

aid in independently justifying the proposal manager's

estimate.

While under contract to R&DC, Boeing used their cost

model to test several hypotheses about the cost benefit

attributable to modern programming practices (Black, et al.,

1977; Black, 1978). BCS derived and calibrated their model

against internal software projects using traditional

programming practices. This model has received wide-spread

exposure as part of the DOD's embedded computer resources

DSIRC guidebook (DeRoze, 1977).
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a. Size of computer software in units of delivered

source statements. The BCS model assumes that a
"statement" is one fully checked tested, and docu-

mented statement coded in a selected language. The
choice of high-level language can have a significant

effect on the development cost, but ordinarily affects
only portions of the total task.

b. Type of software to developed. BCS observed some
combination of five generic functions. Each "type"

has its own group productivity rate. The specific

software type and productivity rates are as follows:
0 mathematical Opns 6 ortaensource statements

* Report Generation 8 1anmonths/• 1000 source statements
o" •Logic Operations 12 ganmonths/+Lgc1O i source statements

;0 • Signal Zroc~ssing, 20 mannonths/
Daa Reduction 0 source statements

* Re~l-Time Execut4ve or 40 manmonths/
Avionics interfacing 1000 soucce statements

The decreasing pr: ductivity is caused by the

increasing complexity of the type of software being

developed.

c. Tasks to be accomplished in the computer software
development, are distributed by the BCS model as

follows:

Ta sk Total Cost
* Requirements Definition 5
" Design and Specification 25

' * Code Preparation 10

. Code Checkout 25
- Integration and rest 25
* System Test 10
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The numerical distribution opposite the task does not

consider reuse and sophisticated debug tools. The

distribution is not necessarily a rectilinear function

of time, but is intended to be used as a guideline for

schedule preparation. Documentation is not included

in this estimating procedure and must be estimated by

scume other method, not defined in the model itself,

and added to the manpower estimates.

d. Adjustment of the labor estimates is accomplished by

means of table lookup multipliers given in Table VIII.

All terns are assumed by the model developer to be

self-explanatcry.

Using this model, Program Office personnel would esti-

mate how much of the total OFP software is closest repre-

sented by one of the five generic types of software. In

*. practice, estimating the size and type would be based on

past experience with similar projects that have been

adjusted to the new application. Everything associated with

the manmonth estimate flows from this first step.

Table VIII provides the estimator with phase-sensitive

multipliers for adjusting the baseline manmonths estimate.

The user should be alert to stringent sizing or timing limi-

tations. These effects should be estimated by some other

procedure (not given) and added to the baseline manmonth

estimate.

After individual labor costs have been adjusted by use
of the table, the BCS model sums up the individual estimates

and arrives at the total labor cost for the project.

Computer time is estimated by a rule of thumb that approx!-

mately three hours of stand-alone computer time will be

spent per manmonth.
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The fundamental output is the total mansouths estimated

for the planned software project. In turn, the total

manmonths are spread over a six stage development cycle from

requirements definition to system test.

Although acceptable engineering accuracy in estimating

total maonths is claimed by the model developers for

traditional programming practices (c. 1970), the examples of

estimating accuracy are not encouraging for modern program-

ming practices. In other words, the intent of the BCS model

is to show how much a new project would have cost if done

the old way. Presumably the lower observed cost is due to

the new design methodologies. Output results for five

projects given by SCS are shown in Table IX. A guideline is

to try this model cn some historical data and compare the

accuracy of predicted versus actual manmonths before

attempting to use it in practice....

TABLE IX

Forecasted versus Actual Costs for the BCS Model

IForcast Actual Forecast/Actual
- Projecti Total Hanmonths| -Total Manmonths| Ratio- j

A 419.7 71.0 5.9

B 2288.5 991.7e* 2.3

C 51.5 43.8 1.2

D 3298.7 51. 8*J 6.
2 7.9 7.3 1. 1

' * Contains some estimate-to-complete data, along with
actuals
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C. IBM WALSTON-FELIX COST MODEL

PrnLR2
Walston and Felix conducted experiments on 60 completed

software development projects in their search for a method

of estimating programing productivity (Walston-Felix, 1977).

The purpose of this effort was to estimate the rate of
production of lines of code by projects, as influenced by

project conditions and requirements.

Five specific objectives of the Walston-Felix model are
a. To evaluate improved programming technologies.

b. To provide support for proposals and contract

performance.

c. To gather historical records of the software devel-
opment work performed.

d. To provide programming data to management.

e. To foster a common programming terminology.

Completed projects in the Walston-Felix data base ranged
in size from 4,000 to 467,000 delivered source lines of code
and in effort from 12 to 11,758 manmonths. Applications

programs included realtime process control; inzeractive,
report generators; data base control; and message switching

programs. Twenty-eight different high-level languages and
66 different computers are represented in their data base.

.4 This is an outstanding example of a closed-form model
obtained by linear regression analysis of a large and

diverse body of actual software projects. Some further
technical work is required to extend the findings of Walston

and Felix to the specialized needs of avionics software.
The additional work to be done in calibration of the model
will be discussed in. ..Computational Procedure.

a. Number of lines of delivered source code. Source

* lines are 80-character source records provided as

": 1 11
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input to a language processor. Job control languages,

data definitions, link edit language, and comment

lines ang included. Reused code is not included.

b. From the raw data provided by the 60 projects, a set

of 68 variables was selected for analysis to find

which ones were significantly related to productivity.

Tventy-nine of the variables showed a significant

correlation with productivity and have been retained

for use in estimating....

c. ....The model user is asked to ansver a multiple-

choice question in his response to the statement: User

participation in definition of requirements is: none,

some, such. In the origional analysis the mean

productivity was computed for the 60 completed

projects for which no user participation was reported

and found to be 491 DSL/KH. The mean productivity for

all projects that reported some user participation was

267 DSL/Nf, and the mean productivity for those

reporting much user participation was 205 DSL/HE. The

absolute value of the change in productivity from no

user participation to much user participation is found

to be 286 DSL/Ko...

g3.CornuatioRal Zprce
The Valston-Felix cost model can aid Program Office

personnel in estimating five project parameters: produc-

tivity, schedule, cost, quality, and size of the software

product to be delivered. One difficulty is in identifying

and measuring independent variables that can be used to

estimate the desired variables, such as estimating the size

of the software product to be Ielivered. We take the point

of view that the size of the software product to be leliv-

ered can be independently, albeit with difficulty, estimated

-. from the internal historical data base associating avionics
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function with size (Battelle, 19781 or avionics function

with software requirements (Heninger, et al., 1978).

Productivity is a significant variable in all software

estimating processes. Programming productivity is defined

here as the ratio of the delivered source lines of code

(DSL) to the total project effort in manmonths (119) required

to produce the delivered product. Total manmonths covers
the management, administration, analysis, operational

support, documentation, design, coding, and testing effort

expended in the development phase. Analytical results are

derived at start of work, PDR, midway through software

development, at acceptance test completion, and every three
* . months during the service or maintenance phase.

The 29 variables...are combined into an index based on

the effect of each variable on productivity from previous
analysis. The productivity index is computed as follows:

9I ala 1 il

where

I a productivity index for a project

i = question weight, calculated as 0.5 logl4PC) i
i"" (PCi u productivity change indicated for a given

i question i....

I  -question response (+1, 0, or -1), depending on

whether the response indicates increased, nom-

inal, or decreased productivity.
.... The data set is analyzed by ordinary least squares

and the standard error of estimate, or standard deviation of
residuals, is shown as dashed lines. In the data sample

studied, the productivity index ranged from -4 to +4

(private communication with C. Walston). The Air Force

model user would determine his own productivity index for a

single project by answering th. 29 questions...and by

113
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* calculating I according to the above formula. He then

multiplies his average productivity for all past avionics

software in his data base by the productivity index for the

acquisition at hand.

If the Program Office has a historical data base of many
projects, the total effort can be determined by a least

squares fit and the regression equation from the Program
Office's own internal data analysis at the point I 0,
DSL/HE = 27, using the coordinate system.... A statis-

tical analysis program such as the Statistical Package for

the Social Sciences (a product of SPSS, Inc.) would be

helpful. SPSS will also provide other descriptive statis-

tics such as the standard error of the linear regression

line....

The statistics...are given by medians and quartiles
because of the variability in the measurement data. Note

that the median productivity (I = 0) is 274 DSL/HN. The
median for the size of the delivered software product is

20,000 lines; 50 percent of the projects reported that the

size of their delivered code ranged from 10,000 to 59,000

lines. Resources for project development are shown. The

error detection results are for the distribution of errors

reported during the development period....
The amount of calendar time to allow for the development

of software is difficult to express from a closed-form

model. However, the equation for project duration in months
as a function of total effort in manonths was found to be:

N a 2.4$7 3
0 .35

where,
1= duration in months, for full-scale development
E effort in manmonths, for full-scale development.

"-' 1114



.,
From the data collected for service projects, certain

descriptive statistics were calculated.... The interpreta-
tion is the same as before: median data and quartile lata

are presented due to the scatter in the raw reports. No

predictive relationships are given for service projects.
Documentation, as defined in this model, consists of

program functional specifications and descriptions, usersO

guides, test specifications and results, flowcharts, and

program source listings that are delivered as part of the

documentation. To a close approximation, the least squares
equation for the number of pages of delivered documentation

varies directly as the number of lines of source code; that

is
: 1.01

D - 49 L

where,

D - pages of documentation, including source listings

O u L a thousands of source code lines

The major outputs available to the model user are as
V'.

-: follows:

a. Total effort in manmonths required to produce the

lines of source code.
b. Duration of project in months.

c. Use of improved programming technologies expressed as
a percentage of code developed using each technique.

d. Estimated productivity of project as influenced by

project environment and requirements.
e. Pages of documentation for the intended project,

including pages of source listings delivered as part
of the documentation requirements.

f. The results do not support answers to certain
project attributes implied by the data coeffi-
cients...because of cross-correlation effects (i.e.,
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the individual attributes are not statisticlly ino-
pendent). For example:

1. Chief programmer team.
2. Top down development.

3. Structured programming.
.I. Design and code inspections.

The contribution of each attribute could not be taken
individually because in the definition of chief

programmer team the other techniques are implied.
g. Other descriptive stati tics can be inferred from

study of the report itself; for example, the cost of
computing time and the average number of people (total

manmonths of effort divided by the duration) as a
function of the total effort. The responsibility of

relating the lines of executable assembly code to

lines of delivered source code rests with the model
user.... A scaling law for the Walston-Felix model can

be derived from internal avionics historical data.

D. PUTSAM'S SOFTWARE LIFE CYCLE COST MODEL (SLIM)

a descriptive cost model, coupled with informed opinion,
will aid in answering top-level management questions about

the development of OFP software. Descriptive statistics

associated with expected OFP software cost, development

time, manning levels, and perturbations about these esti-

mates are significant management interests at pre-RFP time.

The Air Force can specify a useful lifetime, say 10 years,

and obtain a quantitative :cst estimate of the OFP softwarg
life cycle subject to the assuaptions of the model.
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Three input parameters are required to calibrate this

model's technology constant (Ck) for avionics applications.

The F-111 data point...was the. basis for this calibration.

The three data points are:

a. lumber of delivered lines of executable source code,

not including comments: 22,100.
b. Number of manmonths for developing software: 805.

c. Number of calendar months for developing software: 33.

The user is prompted for all inputs by the EDITOR built

into the SLIN cost model. Seventeen on-line inputs required

for this model are as follows:

a. Enter title of software system. Avionics, F-111

b. Enter start date (mmTrY). 0174

. c. Enter the fully burdened labor rate ($/MY) at your

orgainization. 60000

d. Enter the standard deviation of your labor rate

(s/my). 6000

e. Enter the anticipated inflation rate as a decimal

fraction. 0.065
f. Enter the proportion of development that will occur in

on-line, interactive mode. 0
g. Enter the proportion of the development computer

that is dedicated to this system development effort.

0.2

h. Enter the proportion of the system that will be

coded in a HOL. 0

i. Enter the number corresponding to the primary

language to be used. (Twelve choices are given.) 10

= assembly level language.

J. Enter the number corresponding to the type of your

system. 1

" 1. Real-time or time critical system

2. Operating system
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3. Command and control
4. Business application

5. Telecommunication and message switching

6. Scientific system

7. Process control.
k. Choose the response below which best describes your

system. 2

1. The system is entirely new, with many interfaces,
and must interact within a total management infor-
Nation system structure.

2. This is a new stand-alone system. It is simpler
because the interface problem with other systems

is eliminated.

3. This is a rebuilt system with large segments of
existing logic. The primary tasks are recording,

integration, interfacing, and minor enhancements.
4. This is a composite system made up of a set of

independent subsystems with few interactions and

interfaces among them. Development of the inde-
pendent subsystems will occur as a considerable
overlap.

5. This is a composite system made up of a set of

independent subsystems with a minimum of interac-

tions and interfaces among them. Development will
occur in parallel.

1. Enter the the proportion of memory of the target

machine that will be utilized by the software system.

0.85
m. Enter the proportion of real-time code. 1
n. Below is a set of modern programming techniques

that may be used on a software development project.
Beside each are thrae possible responses indicating

the degree of usage on your system. 1
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Technique Response

Structured Programming 1) < 25%

2) 25-75%

3) >75%

Design and Code Inspection 1) < 25%

2) 25-75%

3) > 75%

Top-dcvn Development 1) < 25%

2) 25-75%

- . 3) > 75%

chief Programmer Teams 1) <25%

2) 25- 75 %

3) >75%

o. Below are two indicators of personnel that can

impact the cost and t ime to do a project. Beside each

are three possible answere indicating the degree of

experience. 2

Personnel Experience Response

Overall Skill and Qualification 1) Minimal

2) Average

3) Extensive

With Development Computer 1) Minimal

p. Enter sizing information in one of two forms:

1. An overall range of sizes, or

2. Ranges of size on a module-by-module basis.
Enter 1 or 2 to indicate how sizing data should be

entered. 1
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q. Enter the lowest possible and highest possible size in

source statements. 18100, 26100

Total effort can be determined from the software equa-
tion developed by L. H. Putnam (Putnam, 1978; Putnam and

Fitzsinmons, 1979). Tha soft.-are equation is modified by

the environmental input parameters, items f through o. The
software equation is:

1/3 4/3
SU-C K t
s k

where,

S - number of delivered lines of executable source
s code, not including comments

C k a state of technology constant; previous exper-

ience with computer response times and pro-

gamsing practices gives:
C k - 754 for avionics, assembly-level language" J k

C 4k984 for "1973-style" arbitrary develop-

ment

C k  10040 for "1979-style" structured develop-

ment.

K = Rayleigh/Norden life cycle effort parameter in

units of manmonths or manyears
U Rayleigh/Norden time parameter. Time at which

d
peak manpower nominally occurs for large soft-
ware projects. Mathematically, it is the peak

of the curve,

22
2 -t/2t

U, K/t te d

2
K/t system difficulty, or ratio of total effort to

d
development time squared.
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The software equation is used to obtain engineering

quality estimates during the early phases of a software pro-

ject. The software equation is solved using a gradient con-

3
straint, K VD td, where the magnitude of the difficulty

gradient is empirically found for a particular development

environment. Monte Carlo simulation is used to generate

descriptive statistics associated with the effort, develop-

ment time, and development cost. The standard deviations

are used in calculating risk profiles.

The effort, time, and cost point estimates can be
presented in the form of probability plots assuming a gaus-

sian distribution. All that is needed is an extimate of the

expected value (plotted at the 50 percent probability level)

and the standard deviation (plotted offset from the expected

value at the 16 percent probability level) to generate the

probability line on ordinary probability paper. Then one

can determine for example, that there is a 90 percent prob-

ability that the software development will not take more

than x-manmonths of effort. When repeated for all prob-

ability levels of interest, one has a risk profile for that

estimate.

The tradeoff law can be obtained from the software equa-

tion by solving for K. With a Monte Carlo simulation for

generating variances for K and td one can perform a tradeoff

analysis, pick a reasonable effort (or cost) time combina-

tion and complete the sensitivity analysis. The value of

simulating several thousand Monte Carlo runs is that it

produces a measure of the variation in effort and dev.lop-

ment time, or the risk profile. Knowing the sensitivities,

the Air Force PM can use it effectively in planning and

contracting so that the risk level is always within accep-
table range. Examples of this procedure are given in the

COMPSAC 77 tutorial (Putnam and Wolverton, 1977).
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Three options are available to the user: calibrate,
editor, estimate. The option chosen for this illustration

was "estimate.* A file is built from the previous input
data, and an on-line comment shows that the input data check

was acceptable. The structure of the on-line output is

shown below:

a. Summary of input parameters: table of all inputs.

Annotated comment shows Ck, the technology constant,
was separately computed to be 754.

b. Simulation: system cost summary is given as follows:
'

Mean Std Dew

System Size (STNTS) 22100.0 1333.0

Minimum Development time 314.8 1.2
(Months)

Development Effort (Manmonths) 891.0 106.9

Develoet C 1000)-n nlflated dofflarso 4461.0 711.0

- Inflated dollars 4887.0 787.0

c. Sensitivity profile for minimum time solution

(i.e., expected values of time, effort, and cost for

the whole size profile):

Source Man- Cost
Statements Months Months (x $1000)

-3 SD 18100 31.9 525 2627

-1 SD 20767 33.9 763 3814

Most Likely 22100 34.8 891 4461

+1 SD 23433 35.6 1034 5172

+3 SD 26100 37.3 1331 6657

_Where SD _;- Sta ndard Deviation
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d. k cross-check with data from other systems of the

same size for the most likely astimates is given. As

ccmpared with the RADC data base (which is a mixture
of software projects), the remarks show less than

normal productivity for avionics OFP software. This

is to be expected.

e. An on-line information note gives the user 14 options

for the remaining output; several of these will be
given to show the management parameters available.

f. Linear program: this function uses the technique of

linear programming to determine the minimum effort

(and cost) or the minimum time in which a system can

be built. The results are based on the actual
manpower, cost, and schedule constraints of the user,

combined with the system constraints provided earlier.

1. Enter the maximum development cost in dollars.

4500000

2. Enter maximum development time in months. 36

3. Enter the minimum and maximum number of people

allowed on board at peak manloading time. 15, 40

Cost
Time Effort (x $1000)

Minimum Cost 36.0 Months 778 MM 3892

Minimum Time 34.8 Months 889 MM 4446

g. I tradeoff analysis within these limits is shown

below.
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Time Nansonths Cost (z $1000)

34.8 889 4446

35.0 869 4345

35.2 8149 14247

35.4 830 4152

35.6 812 4059

35.8 794 3970

36.0 778 3892

h. Front end estimate: recall that the SLIM model

assumes that the estimated time length is from logic

design. Therefore, a separate front end estimate is

required, as follows:

Time (months) Effort (an)i- L) (E) (H) (L) (E) (H)

Feasibility 7.8 8.7 9.6 9 35 61
Study

Fungtional 10.4 11.6 12.8 25 50 75
Design

Note: L - Lov, E - Expected, H = High
i. Manloading: The table shovs the mean projected effort

and associated standard deviations required for devel-

opment. The input parameters are

dean Std Dev

Development Effort (Hanmonths) 891.0 106.9

Development Time (Months) 34.8 1.2
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--- -- - ----------------------- - - ------------------

m eople/ Cumulative Cumulative
Time 96th Std Dev Nanmonths Std Dev

Jan 74 2 0 2 0
Feb74 5 1 7 1
Mar 74 9 1 16 2

Oct 76 17 2 877 105

Nov 76 15 2 893 107
Dec 76 7 1 900 108

(This distribution of 36 rows is essentially a

Rayleigh 41jstribution over the calendar period of
performance, with integer values for all entries.)....

o. Other primary outputs from the Slim cost model

include:
1. Code production: calendar time versus cumulative

source statements

2. Computer usage: calendar time versus CPU hours
3. Documentation: expected number of pages of docu-

mentation

4. Design-to-cost: SLIM has provided its best esti-

mate of the minimum time and corresponding maximum
effort ( and cost) to develop your system. A
greater effort would result in a very risky time

schedule. However, if a lower effort is specified
(within reasonable limits), development is still

feasible as long as more time is allowed.

Entered desired effort in manmonths. 805
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Mean Std Dev

New Development Time (Months) 35.7 1.2
New Development Cost (x $1000) $4025 488.0

5. The original file is updated with these new param-
eters, and the user can run manloading and cash

flow or life cycle to see how these savings can be
realized. This can be used interatively to match

some projected benefit stream and get the project
approved. (Connect time was about 37 minutes to

run SLIM, at a cost of about $25)
In summary, the SLIM model is a descriptive, macro-level

cost estimating tool applicable to OFP software, provided
that its technology constant (Ck) is calibrated from valid

historical OFP project data: number of delivered lines of
executable source code; number of mansonths from project
start to software acceptance; and number of calendar months

for the development. This step and its consequences must be
understood by the user. SLIM composes the feasibility study

and functional design as a separate front-end estimate which
must be added to the initia 1 cost estimate. Labor mix and

work breakdown structure information is not given.
Resources are allocated against time (spread by a Rayleigh

distribution), but not against function (e.g., analysis and

design, code and debug, and test and integration). All

statistical parameters are assumed to be normally distrib-

uted for mathmematical tractability. This assumption may
contribute to the extreme sensitivity between minimum cost

and minimum time as shown in item f, linear program example;

i.e., a 3 percent change in calendar time (from 36 to 34.8
months) corresponds to a 14 percent change in cost (33892K

1 26



to $4446K). All mathematical expressions used in the compu-

tational procedure are continuous functions; therefore the
model will always produce a calculated estimate. As with
all models, this estimate must be tested against experience

and human insight.

'12

. " 1 27

...........°



U=I=Lli =1~ AND CiJ3TIS

TABLE X

Project A Data

Actual Time Predicted LC Predicted Maintenance
sanuths Aths Manlhs Mansths

4 1.9600 1 2.6005
5.14600 2 5.0970
7.1380 3 7.3683
9.1380 14 9.31453
11.9180 5 10.95144
12.1380 6 12.1522
13.1380 7 12.920S12.1380 8 6363
11.9240 9 1:3
15.2690 10 12.8235
9.84160 12 11.2388
8.3077 13 10.18146

10.81460 141 9.041146
6.8460 15 7.8778
5.84160 16 6.73412
5.81460 17 5.6528
3.0000 18 4.6616 1.19124
3.2800 19 3.7780 2.22748
2.84100 20 3.0101986
4. 000 21 2.3583
3.00 22 1.8174 3.417740
2.0000 23 1.3778 3.26075
2.00 00 254 1.0278 2.841229
:0000 25 0.7545 2.32054
2.00 26 0 51 1.78318
290000 27 0:3877 1.29398

6I1.000 11 12.1____ ____13

2.0000 28 0.271S 0.88884
1.5000 9 0.1871 0.57894
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* "** TABLE XI

Project B Data

Actual Time Predicted LC Predicted Maintenance
Manuths Mths Manmths Hanmths

5.9200 1 3.8688
.9200 2 .4128

7.8600 3 10.35J
1 4200 4 12.48
19:8000 5 13.7264
15.5800 6 14.075114.34,00 7 13.63

13.1800 8 12.568
12.0200 9 11.0966
50000 10 9.3971
=.3333 11 7.654 1.76084
2.00 12 6:011 3.32648
4.5556 13 4.5561 .53730
4.14722 114 3.3355 5.29599
5.14167 15 2.36 10 5.57900
5.5000 16 1.6169 5.43158
5.6111 1 1.0719 4.94937
3.7778 18 0.6882 4.25312
3.8889 19 0.4280 3.46350
2.7778 20 0.2580 2.68174I,,1.5833 21 0.1508 1.97898 ]
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TABLE III

Project C Data

..

a.

Ictual Time Predicted LC Predicted Maintenance
Manuths Mths Manuths Hanuths

6.0 1 2.82 13
7.5 2 5.5154
7.0 3 7.9644
8.5 14 10.0687

12.5 5 11.7533
12.5 6 12.9721
13.0 7 13.7095
14.8 8 13.9789

.14:. 9 13.8191
14.0 10 13.2888
13.0 11 12.4601
11.0 12 11.4116
11.0 13 10.2221
8.0 114 8.9650
8.0 15 7.7044
9.0 16 6.:49 20
3.0 17 5.3669 0.64025
2.0 18 4.3546 1.25743
2.0 19 3.4692 1.82983
2..0 30 2.7146 2,33840

2 0 2.0868 2.76779
h-5 22 1.5764 3.10709
4.0 23 1.1704 3.35022
3.0 214 0.8543 3 .49602
4.0 25 0.6131 3:54788
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TA BL- XIII

Project D Data

Actual Time Predicted LC Predicted Maintenance
Eanuths Mths Manaths Manaths

6.0000 1 3.85 85
9.5200 2 7.1746
8.5769 3 9.5312
9.6369 4 10. 213
9.6369 5 10.7 02

11.1700 6 9.8940
10.2260 7 8.4176
5.2800Q 8 6.6828
1.680 9 4.9749 0.66747
2 .480 10 3.4814 1.31143
3.0000 11 2.30 15 1.90977
1 0000 12 1.43 16 2.44J97

0. 3 0.8477 2.89 25
5 ooo 13 0.4738 3.25522
3: 000 15 0.2510 3.51641
:0001 3.740

4.0000 18 8.272 371413
2.0000 19 .011 60786
3.0000 24 8:888, ;.6,o,7771.0588 HI 0:8,019 3.2090
276000 22 0 .0007 2.94528
3:0000 400 135956
2.5000 25 0.0000 2.06207

1.5000 26 0.0000 1.77470
1.0 27 0.0000 1547
19o 28 0.0000 1: 734

1.5000 29 0.0000 1.03565
1.0000 30 0.0000 0.84109
1.0000 31 0.0000 0.67365
1.0000 32 0.00 00 0.53218
1.00 0 33 0.0000 0.41475
2.0000 34 0.0000 0.31892
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TABLE XIV

Combined Project &-D Data Normalized to ta-I

Actual Time Predicted LC Predicted maintenance
Hanuths liths Kanths Manuths

4198 810 :3128-
6.0008 0.167 3.8213

5:460 0.200 4.5433
5.9200 0.200 4.5433I
7.5000 0.222 5.01517.1380 0.300 6.6140
7.0000 0.333 7.2503
9.5200 0.3341 7.2692
9.1380 0.400 8.4568
5.90 0400 8.4568
8.51ss 8:444 9.1807

11.9180 0.500 10.0167
8.5769 0.501 10.0307

*12.500Q 0.555 10.7J90
12.138 0 0.60 11.2541
7.8600 0.600 11.2541

12.5000 0.666 11.8826
9.6369 0.668 11.8993

13.1380 0.700 12.14168
13.0000 0.777 12.5957
13.4200 0.800 12.6900
12.1380 0.800 12.69039.6369 0.835 12 7 97
111.0000 0.888 12.8875
11.9240 0.900 12.8950
11.1700 1.000 12.7876
15.2690 1.000 12.7876
14.0000 1.000 12.7876
15.8000 1.000 12.7876
13.2800 1.100 12.404914:.0000 1.111 12.3478

9.84160 1.200 11.7921

1 0 1221
8 o3077 1.100 10.9993

11.0000 1.333 10.7069
5 00 1.334 10.6979
186 1.400 10.0777

14300 1.400 10.0777
11.0000 1.444 9. 644

6 .8460 1.500 9.0770
1.6800 1.501 9.0667
8.0000 1.535 8.7165
5.84160 1.600 8.0424
13.1880 1.600 8.04290
8.00 0 1.666 7.3605
S.4800 1.668 7.3399
S8460 1.700 7.01349 1.777 6.245612:8388 1.800 6.022

................... 100 ..



Table XIV continued

Actual Time Predicted LC Predicted Maintenance
Manaths Eths Manusths Manmths

3.0000 1.800 6.0224 0.005B
31.835 5.6893 0.184 7oo 1.888 2016 0.46312

.2800 1.900 .941 0.52590
..000 2.00 4.2458o 10Jo3
.840 2.000 .2458 1.04203

2.0000 2.000 4.2458 1.04203
5.0000 2.000 4.2458 1.04203
4.0000 2.100 3.4880 1 53892
20000 2.111 3.4104 1.59202
3 000 2.167 3.0332 1.85663

3: 0 2.200 2.8249 2.00771
4.3333 2.200 2.82149 2.00771
2.0000 2.222 2.6917 2.10625
2.0000 2.300 2.2559 2.44037
2.0000 2.333 2.0882 2.57399

2 0000 2.400 1.7768 "82995
.7500 2.400 1.7768 2.82995
2.5000 2.444 1.5926 2.98621
2 2.0000 2.500 1.,3803 3.17078
3.5000 2.501 1.3768 3.17393
4.0000 2.535 1.2595 3.27772
2.0000 2.600 1.0579 3.45858
4: 455 2. 8 J600 1:0579 3.45858
3 .666 0.8810 3.61804
2.5000 2.668 0.8761 3.6229
2.0000 2.700 0.7999 3.69053
4.0000 2.777 0.6392 3.83018
4.4722 2.800 0.5969 3.86530

.00 2.80 0.5969 3. 86530
U GO 2.835 0.5370 3.91294

1. 500 2.900 0.4395 3.98301
4:0 00 3.0 0 0.3194 4.04514
5.4167 3.000 0.3194 4.04514
2.0000 3.167 0.1820 4.032905 000 3.0 .J2401462

5.6111 3.400 0.0782 3.80710
3.5000 3.501 0.0531 3.64877
3.7778 3:60% 0.0358 3.46657
2.0000 66 0.0272 3.32901
3.8889 3.800 0.0156 3.04092
2.7600 3.835 0.0134 2.961177:78 84 00 065 2.57596

00000 4 065 .57596
2.5000 4.167 0.0030 2.18624

S1.5833 ,4.200 0.0025 2.11088
1.50 4.3J4 0.013 1.811450
1: 000 4.5 1 00006 1.47364
1 .450 1.668 0.0002 1.17173
1.5000 4.835 0.0001 0.91255
1.0000 5.000 0.0000 0.69870
1.0000 5.167 0.0000 0.52270
1.8280 34 o0o8 0:38341 10. 0000 O.:275722.0000 5.668 0.0000 0.19449
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TABLE XV

NASA Project Data

DATE HHRS RKTHS BYRS DATE EHRS BBTHS BYRS

575 773 1.039 0.088 11/78 400 0.556 0.046 1
6/75 780 1.083 0.089 12/78 410 0.551 0.047
7/75 864 1.161 0.098 1/79 510 0.685 0.058
/75 929 1.249 0.106 2/79 420 0.625 0.048
9/75 953 1.324 0.109 3/79 370 0.497 0.04210/75 1013 1.362 0.115 4/79 410 0.569 0.07
11/75 1006 1.397 0.115 5/79 390 0.524 0.04
12/75 1037 1.394 0.118 6/79 40 0.611 0.050
1/76 1061 1.426 0.121 7/79 670 0.901 0.076
2/76 877 1.260 0.100 8/79 520 0.699 0.059
3/76 1150.5 1.546 0.131 9/79 580 0.806 0.066
4/76 1073 1.490 0.122 10/79 140 0.599 0.050
5/76 1055.5 1.419 0.120 11/79 294 0.408 0.034
!/76 1108 1.539 0.126 12/79 275 0.370 0.031
T/76 1000 1.344 0.114 1/80 410 0.551 0.047
8/76 867 1.177 0.100 2/80 367 0.527 0.042
9/76 640 0.889 0.073 3/80 541 0.727 0.062
10 /6 422 0.567 0.048 4/80 482 0.669 0.055
11/76 340 0.1172 0.039 5/80 299 0.402 0.034
12/76 260 0.349 0.030 6/80 449 0.624 0.051
1/77 188 0.253 0.021 7/80 418 0.562 0.048
2/77 290 0.432 0.033 8/80 216 0.290 0.025
3/77 414 0.597 0.051 9/80 211 0.297 0.0244/77 390 0.542 0.04 10/80 230 0.309 0.026
5/77 280 0.376 0.032 11/80 361 0.501 0.041
6/77 320 0.444 0.036 12/80 377 0.507 0.043
7/77 260 0.349 0.029 1/81 487 0.655 0.055
8/77 274 0.368 0.031 2/81 628 0.935 0.072
9/77 212 0.294 0.02 .3/81 500 0.672 0.057
10/77 280 0.376 0.032 4/81 537 0.746 0.061
177 3U0 0.472 0.039 5/81 386 0.519 0.044

12277 368 0.495 0.042 6/81 321 0.446 0.037
1/78 718 0.965 0.082 7/81 492 0.661 0.056
/. 8 48 0.714 8:55 8/81 656 8.882 0.0753/= 78 420 0.565 048 9/81 73 0. 101 0.008

93, 441 . 0.047 10/81 570 0.766 0.0655/78 298 0.390 0.033 11Af 1116 0.578 0.047
6/78 290 0.403 0.033 12/8 352 0.473 0.040
7/78 360 0.484 0.04 1 1/82 830 1.116 0.095 I
8/78 360 0.484 0.041
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